Deficiency of very long chain alkanes biosynthesis causes humidity-sensitive male sterility via affecting pollen adhesion and hydration in rice
作 者:Yu B, Liu LT, Wang T* |
影响因子:5.624 |
刊物名称:Plant Cell and Environment |
出版年份:2019 |
卷: 期: 页码:DOI: 10.1111/pce.13637 |
Pollen adhesion and hydration are the earliest events of the pollen–stigma interactions, which allow compatible pollen to fertilize egg cells, but the underlying mechanisms are still poorly understood. Rice pollen are wind dispersed, and its pollen coat contains less abundant lipids than that of insect‐pollinated plants. Here, we characterized the role of OsGL1‐4, a rice member of the Glossy family, in pollen adhesion and hydration. OsGL1‐4 is preferentially expressed in pollen and tapetal cells and is required for the synthesis of very long chain alkanes. osgl1‐4 mutant generated apparently normal pollen but displayed excessively fast dehydration at anthesis and defective adhesion and hydration under normal condition, but the defective adhesion and hydration were rescued by high humidity. Gas chromatography–mass spectrometry analysis suggested that the humidity‐sensitive male sterility of osgl1‐4 was probably due to a significant reduction in C25 and C27 alkanes. These results indicate that very long chain alkanes are components of rice pollen coat and control male fertility via affecting pollen adhesion and hydration in response to environmental humidity. Moreover, we proposed that a critical point of water content in mature pollen is required for the initiation of pollen adhesion.