1989年毕业于安徽师范大学,1992和1997年在中国科学院植物研究所分别获得硕士和博士学位,1998年7月-1999年5月在美国Michigan State University作访问学者。曾任系统与进化植物学国家重点实验室副主任、常务副主任和主任(2002-2017),《生物多样性》常务副主编和主编(1999-2008)。现任中国科学院植物研究所研究员、博士生导师、所长,国家植物园副理事长、中国植物学会副理事长兼秘书长,中华人民共和国濒危物种科学委员会委员,国家植物标本资源库负责人,中国科学院植物科学数据中心主任,Molecular Phylogenetics and Evolution副主编、Plant Biology editor、Journal of Systematics and Evolution编委、European Journal of Taxonomy咨询编委等。主要从事植物进化生物学、生物地理学和分子生态学研究,主持国家重点研发计划项目、中国科学院战略性先导科技专项项目等。近年来在裸子植物的进化和生物地理学、青藏高原植物进化和谱系生物地理学、杜鹃花属的时空进化等研究方面取得了重要成果。迄今发表论文100余篇,其中40余篇(第一或通讯作者)在PNAS、Nat. Commun.、Mol. Biol. Evol.、Proc. R. Soc. B.、Mol. Ecol.、Mol. Phylogenet. Evol.、J. Biogeogr.等国际主流杂志上。1997年获中国科学院院长奖学金特别奖,1999年获首届全国优秀博士论文奖,2004年获国家杰出青年科学基金,2006年被评为中国科学院研究生院优秀教师,2009年入选“新世纪百千万人才工程”国家级人选,2011年获政府特殊津贴。已培养博士20余名,其中多位获中国科学院院长奖优秀奖等。
科研项目:
1)国家重点研发计划项目“代表性珍稀濒危植物的保育和种群恢复技术” (2022YFF130170,2022.09-2026.08),主持人。
2)中国科学院A类战略性先导科技专项“美丽中国生态文明建设科技工程”项目八“自然保护地健康管理与生态廊道设计技术” (XDA23080000,2019.01-2023.12),主持人。
3)国家重点研发计划项目“全球变化对北半球木本植物多样性的影响” (2017YFA0605100,2017.07-2022.06),主持人。
4)国家自然科学基金重点项目“青藏高原植物辐射式物种形成的机制研究” (31330008,2014.01-2018.12),主持人。
5)国家自然科学基金面上项目“倪藤类植物的系统位置与分子进化研究” (31170197,2012.01-2015.12),主持人。
6)国家重点基础研究发展规划(973)项目“中国-喜马拉雅地区生物多样性演变和保护研究”,主持第二课题“适应辐射与物种形成” (2007CB411602,2007.7-2011.12)。
7)国家自然科学基金重点项目“青藏高原代表性植物类群的起源与物种分化” (30730010,2008.01-2011.12),主持人。
8)中国科学院知识创新工程重要方向项目“青藏高原代表性植物类群的演变与分子生态学研究”(kzcx2-yw-415,2007.1-2009.12),主持人。
9)国家杰出青年科学基金“松柏类植物核基因的进化与分子生物地理学” (No.30425028,2005.1-2008.12),主持人。
10)国家自然科学基金委创新研究群体科学基金“植物进化机制的进化发育生物学研究”(No.30121003,2002.1-2004.12;2005.1-2007.12),主持子课题“马先蒿属的进化生物学研究。
11)中国科学院全国优秀博士学位论文作者专项资金“松柏类植物的系统发育及分子进化研究”(2001-2005),主持人。
12)中国科学院“十·五”重要方向项目“若干重要植物类群的系统发育重建和分子进化”(No.kscxz-sw-101A,2001-2004),主持子课题“松柏类植物的物种形成与分子进化”。
13)国家重点基础研究发展规划(973)项目“长江流域生物多样性变化、可持续利用与区域生态安全”,主持第四课题“物种分化与物种多样样” (No.G2000046804,2000.4-2005.3)。
14)国家自然科学青年基金“毛茛科升麻族植物的分子系统发育”(No.39800010,1999-2001),主持人。
15)国家自然科学基金"九五"重点项目“原始被子植物的结构、分化和演化”(No.39630030,1997-2000),主持子课题“原始被子植物的分子系统学研究”。
16)国家自然科学基金"八五"重大项目“中国主要濒危植物的保护生物学研究” (No.39391500,1993-1997),主要完成人之一。
主要成绩
1. 种子植物的系统发生、进化与生物地理学研究
对裸子植物的进化和生物地理学进行了长期深入的研究,重建了裸子植物所有科属间的进化关系,利用分子钟推断了各类群间的分化时间,揭示了一些重要性状的进化历史(Plant Syst Evol,1998;Mol Biol Evol,2000;Mol Phylogenet Evol,2012,2014,2018,2022;PLoS One,2014;Proc R Soc B,2018);确立了种子植物5大支系间的进化关系,尤其是倪藤类与松科的姐妹群关系(Proc R Soc B,2018);重建了广义柏科和罗汉松科地理分布格局的形成过程(Mol Phylogenet Evol,2022a,2022b),发现狭义柏科两个支系的形成与南北半球的分离而导致的隔离分化有关,并且南半球狭义柏科植物的分化与冈瓦纳大陆的分离呈现出一定的相关性,因而为隔离分化学说提供了进一步证据(Mol Phylogenet Evol,2012)。
对全球松属植物的时空进化进行了研究,发现该属虽然起源古老,但约90%的现存物种在中新世分化形成;中纬度地区物种的分化时间明显早于高纬度和低纬度地区的物种;地形在松属物种分化中起着关键作用,干旱指数在生态位进化速率的转变中起决定性作用,且火在松属的物种多样性和分布格局形成中具有重要作用。该研究表明中纬度地区很可能是松柏类植物的进化博物馆,松属物种对温暖、干燥生境的偏好有助于其更好地适应当前的气候变化(PNAS,2021)。
对云杉属、落叶松属、黄杉属、铁杉属、雪松属等类群的所有物种进行了系统发育重建和生物地理学研究。发现:(1) 多个属起源于北美,而非前人提出的东亚起源,进一步说明物种多样性的中心未必是起源地;(2) 虽然松柏类植物的科、属起源古老,但现存大部分物种非常年轻,源于近期辐射分化,且一些近缘物种间发生过复杂的网状进化(Mol Ecol,2004; Mol Phylogenet Evol,2006;Ann Bot,2007;Mol Phylogenet Evol,2008,2010,2015,2019,2021)。
对裸子植物多倍体物种的形成和亚基因组的进化进行了研究,发现了麻黄属植物中高频率的异源四倍体物种形成(Mol Ecol,2016),且异源四倍体物种的亚基因组进化模式与绝大部分被子植物异源多倍体物种不同,亚基因组间不存在进化偏向,二倍化过程很慢(Genome Biol Evol,2021)。对裸子植物线粒体基因组的进化及丢失基因的进化命运进行了研究,发现Conifer II(除松科外的其它松柏类植物)和倪藤类植物的线粒体基因数目大幅减少;在Conifer II中,线粒体基因的转移非常频繁,但直接丢失很少发生;在倪藤类植物中,线粒体基因的转移和丢失均非常频繁(BMC Evol Biol,2020;BMC Biol,2021)。对裸子植物的rps3基因进行了研究,发现该基因的第三个外显子在Conifer II中发生了很大的长度和序列变异,与以往报道的植物线粒体基因的进化规律“基因重排频繁,但基因序列保守”明显不同(Mol Phylogenet Evol,2010)。此外,对裸子植物木质素合成途径中的关键酶基因CAD、气孔发育相关的bHLH基因、rDNA等开展了分子进化研究(J Mol Evol,2003; Mol Ecol, 2004; Mol Phylogenet Evol,2007);发现松科不同形态的针叶具有保守的背腹极性调控机制,但在光合适应性方面已发生分化(BMC Evol Biol,2020)。
对全球杜鹃花属植物的时空进化进行了研究,构建了该属首个高分辨率的进化树,揭示了该属的辐射进化机制,发现:(1)该属植物于早古新世起源于北方高纬度地区,然后南迁至亚热带高山,并跨越赤道到马来群岛等地区,且在中新世南迁至喜马拉雅-横断山区和马来群岛时发生了辐射分化,导致主要分布于这些地区的常绿杜鹃组(Ponticum)和类越橘杜鹃花组(Schistanthe)物种形成速率的大幅提升;(2) 决定该属全球物种丰富度式样的两个主要生态因子是海拔和年降雨量,造山运动导致的地形异质性与亚洲季风增强导致的年降水量增加共同驱动了该属在喜马拉雅-横断山区和马来群岛的辐射分化,且叶片功能性状的适应性进一步促进了该属的辐射进化(Mol Biol Evol,2022)。此外, 对兰科杓兰亚科等进行了系统发育重建,发现历史上的海平面波动和种间杂交驱动了兜兰属在东南亚的物种多样性形成(Mol Ecol, 2015)。
2. 青藏高原植物物种形成、分化及谱系生物地理学研究
为探讨青藏高原地区生物区系的起源、物种快速分化的机制、高原台面上生物种群的建立过程及其与高原隆升和晚新生代气候变化的关系,做了如下研究:(1)基于父系遗传的叶绿体基因和母系遗传的线粒体基因序列综合分析,证实了青藏高原重要森林树种高山松为云南松和油松的二倍体杂种,揭示了该杂交物种形成中的双向基因交流(两个亲本在不同次的杂交事件中均充当过父本或母本)及居群建立过程,发现高山松的物种形成曾经历强烈的奠基者效应和回交,推测青藏高原的隆升解除了云南松与油松的地理隔离,进而导致种间杂交产生高山松。该研究为同倍体杂种物种形成机制研究提供了一个重要例证(Mol Ecol,2002,2003)。(2)对云南铁杉、长花马先蒿等主要分布于青藏高原、具有不同进化历史和生物学特性的多个物种开展了谱系生物地理学研究,发现:因青藏高原隆升而形成的一系列山脉是基因交流的天然屏障,极大地促进了种群的遗传分化,进而加速了物种形成;横断山区是遗传多样性的分布中心,种群在高原上快速扩张时发生了强烈的分子奠基效应;晚新生代气候的剧烈振荡对高原生物种群的分布产生了严重影响,但第四纪冰期时部分生物在高原上存在避难所,因而支持青藏高原地区在末次大冰期并不存在大面积冰川的观点(Mol Ecol,2008; Mol Phylogenet Evol, 2010; J Biogeogr,2015)。
论文专著(* 为通讯作者)
2024
105. Wei Z-R,Jiao D,Wehenkel CA,Wei X-X*,Wang X-Q*. Phylotranscriptomic and ecological analyses reveal the evolution and morphological adaptation of Abies. J. Integr. Plant Biol.,2024. 00: 1–19.
104. Feng Y-Y,Du H,Huang K-Y,Ran J-H*,Wang X-Q*. Reciprocal expression of MADS-box genes and DNA methylation reconfiguration initiate bisexual cones in spruce. Commun. Biol.,2024. 7: 114.
2023
103. Yu Q,Yang F-S,Chen Y-X,Wu H,Ickert-Bond SM*,Wang X-Q*. Diploid species phylogeny and evolutionary reticulation indicate early radiation of Ephedra in the Tethys coast. J. Integr. Plant Biol.,2023. 65: 2619–2630.
102. Sun J-J,Xia X-M,Wei X-X*,Wang X-Q*. Tracing the geographic origin of endangered plant species using transcriptome-derived SNPs: An example of Cathaya argyrophylla. Mol. Ecol. Resour.,2023. 23,844–854.
2022
101. Xia X-M,Yang M-Q,Li C-L,Huang S-X,Jin W-T,Shen T-T,Wang F,Li X-H,Yoichi W,Zhang L-H,Zheng Y-R,Wang X-Q*. Spatiotemporal evolution of the global species diversity of Rhododendron. Mol. Biol. Evol.,2022. msab314.
100. Liu X-Q,Xia X-M,Chen L,Wang X-Q*. Phylogeny and evolution of Cupressaceae: Updates on intergeneric relationships and new insights on ancient intergeneric hybridization.Mol. Phylogenet. Evol.,2022. 177: 107606.
99. Liu Y-Y,Jin W-T,Wei X-X*,Wang X-Q. Phylotranscriptomics reveals the evolutionary history of subtropical East Asian white pines: further insights into gymnosperm diversification. Mol. Phylogenet. Evol.,2022. 168: 107403.
98. Liu Y,Wang S, LiL, YangT, Dong S, Wei T, Wu S, Liu Y, Gong Y, Feng X, Ma J, Chang G, Huang J, Yang Y, Wang H, Liu M, Xu Y, Liang H, Yu J, Cai Y, Zhang Z, Fan Y, Mu W, Sahu SK, Liu S, Lang X, Yang L,LiN, Habib S, Yang Y, Lindstrom AJ, Liang P, Goffinet B, Zaman S, Wegrzyn JL, Li D, Liu J, Cui J, Sonnenschein EC, Wang X, Ruan J, Xue J-Y, Shao Z-Q, Song C, Fan G, Liu Z, Zhang L, Liu J, Liu Z-J, Jiao Y, Wang X-Q, Wu H, Wang E, Lisby M, Yang H, Wang J, Liu X, Xu X, Li N, Soltis PS, Van de Peer Y*, Soltis DE*, Gong X*, Liu H* and Zhang S*. The Cycas genome and the early evolution of seed plants. Nat. Plants, 2022. 8: 389-401.
97. Xie D,Du H,Xu W-H,Ran J-H*,Wang X-Q. Effects of climate change on richness distribution patterns of threatened conifers endemic to China. Ecol. Indic.,2022. 136: 108594.
96. Huang K-Y,Kan S-L,Shen T-T,Gong P,Feng Y-Y,Du H,Zhao Y-P,Wan T,Wang X-Q,Ran J-H*. A comprehensive evolutionary study of chloroplast RNA editing in gymnosperms: A novel type of G-to-A RNA editing is common in gymnosperms. Int. J. Mol. Sci.,2022. 23: 10844.
95. Chen L,Jin W-T,Liu X-Q,Wang X-Q*. New insights into the phylogeny and evolution of Podocarpaceae inferred from transcriptomic data. Mol. Phylogenet. Evol.,2022. 166: 107341.
2021
94. Kan S-L,Shen T-T,Ran J-H*,Wang X-Q*. Both Conifer II and Gnetales are characterized by a high frequency of ancient mitochondrial gene transfer to the nuclear genome. BMC Biol.,2021. 19:146.
93. Wan T,Liu Z-M,Leitch I-J,Xin H-P,Maggs-Kolling G,Gong Y-B,Li Z,Marais E,Liao Y-Y,Dai C,Liu F,Wu Q-J,Song C,Zhou Y-D,Huang W-C,Jiang K,Wang Q,Yang Y,Zhong Z-X,Yang M,Yan X,Hu G-W,Hou C,Su Y-J,Feng S-X,Yang J,Yan J-J,Chu J-F,Chen F,Ran J-H,Wang X-Q*,Van de Peer Y*,Leitch A-R* & Wang Q-F*. The Welwitschia genome reveals a unique biology underpinning extreme longevity in deserts. Nat. Commun.,2021. 12:4247.
92. Jin W-T,Gernandt D-S,Wehenkel C,Xia X-M,Wei X-X*,Wang X-Q*. Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. PNAS,2021. 118,e2022302118.
91. Xie D,Liu X-Q,Chen Y-X,Jiao D,Lou J-X,Qiu X-F,Xu W-H,Wang Z-H,Ran J-H*,Wang X-Q. Distribution and conservation of threatened gymnosperms in China. Glob. Ecol. Conserv.,2021. 32. e01915.
90. Feng Y-Y,Shen T-T,Shao C-C,Du H,Ran J-H*,Wang X-Q*. Phylotranscriptomics reveals the complex evolutionary and biogeographic history of the genus Tsuga with an East Asian-North American disjunct distribution. Mol. Phylogenet. Evol.,2021,157: 107066.
89. Wu H,Yu Q,Ran J-H,Wang X-Q*. Unbiased subgenome evolution in allotetraploid species of Ephedra and its implications for the evolution of large genomes in gymnosperms. Genome Biol. Evol.,2021. 13.
2020
88. Du H,Ran J-H,Feng Y-Y,Wang X-Q*. The flattened and needlelike leaves of the pine family (Pinaceae) share a conserved genetic network for adaxial-abaxial polarity but have diverged for photosynthetic adaptation. BMC Evol. Biol.,2020. 20: 131.
87. Kan S-L,Shen T-T,Gong P,Ran J-H*,Wang X-Q. The complete mitochondrial genome of Taxus cuspidata (Taxaceae):eight protein-coding genes have transferred to the nuclear genome. BMC Evol. Biol.,2020. 20: 1.
2019
86. Shen T-T,Ran J-H*,Wang X-Q*. Phylogenomics disentangles the evolutionary history of spruces (Picea) in the Qinghai-Tibetan Plateau: Implications for the design of population genetic studies and species delimitation of conifers. Mol. Phylogenet. Evol., 2019. 141: 106612.
85. Shao C-C,Shen T-T,Jin W-T,Mao H-J,Ran J-H*,Wang X-Q*. Phylotranscriptomics resolves interspecific relationships and indicates multiple historical out-of-North America dispersals through the Bering Land Bridge for the genus Picea (Pinaceae). Mol. Phylogenet. Evol.,2019. 141: 106610.
84. Liu Y-Y,Jin W-T,Wei X-X*,Wang X-Q*.Cryptic speciation in the Chinese white pine (Pinus armandii):Implications for the high species diversity of conifers in the Hengduan Mountains,a global biodiversity hotspot. Mol. Phylogenet. Evol.,2019. 138: 114-125.
2018
83. Ran J-H*,Shen T-T,Wu H,Gong X,Wang X-Q*. Phylogeny and evolutionary history of Pinaceae updated by transcriptomic analysis. Mol. Phylogenet. Evol.,2018. 129:106-116.
82. Ran J-H,Shen T-T,Wang M-M,Wang X-Q*. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms. Proc. R. Soc. B.,2018. 285: 20181012.
2017
81. Wang H-J,Li W-T,Liu Y-N,Yang F-S,Wang X-Q*. Resolving interspecific relationships within evolutionarily young lineages using RNA-seq data: an example from Pedicularis section Cyathophora (Orobanchaceae). Mol. Phylogenet. Evol.,2017. 107: 345-355.
2016
80. Liu Y-Y,Yang K-Z,Wei X-X*,Wang X-Q. Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals crypticFLOWERING LOCUS T gene homologs in gymnosperms and sheds new light on functional evolution. New Phytol.,2016. 212: 730-744.
79. Wu H,Ma Z,Wang M-M,Qin A-L,Ran J-H,Wang X-Q*. A high frequency of allopolyploid speciation in the gymnospermous genus Ephedra and its possible association with some biological and ecological features. Mol. Ecol.,2016. 25: 1192-1210.
78. Liu Y-N,Li Y,Yang F-S*,Wang X-Q*. Floral nectary,nectar production dynamics,and floral reproductive isolation among closely related species of Pedicularis. J. Integr. Plant Biol.,2016. 58: 178-187.
2015
77. Ran J-H,Shen T-T,Liu W-J,Wang P-P,Wang X-Q*. Mitochondrial introgression and complex biogeographic history of the genus Picea. Mol. Phylogenet. Evol.,2015. 93: 63-76.
76. Wang H-J,Li W-T,Liu Y-N,Yang F-S*,Wang X-Q*. Range-wide multilocus phylogenetic analyses of Pedicularis sect. Cyathophora (Orobanchaceae):Implications for species delimitation and speciation. Taxon,2015. 64: 959-974.
75. Guo Y-Y,Luo Y-B,Liu Z-J*,Wang X-Q*. Reticulate evolution and sea-levelfluctuations together drove species diversification of slipper orchids (Paphiopedilum) in South-East Asia. Mol. Ecol.,2015. 24: 2838-2855.
74. Hao Z-Z,Liu Y-Y,Nazaire M,Wei X-X*,Wang X-Q*. Molecular phylogenetics and evolutionary history of sect. Quinquefoliae (Pinus):implications for Northern Hemisphere biogeography. Mol. Phylogenet. Evol.,2015. 87: 65-79.
73. Cun Y-Z,Wang X-Q*. Phylogeography and evolution of three closely related species of Tsuga (hemlock) from subtropical eastern Asia: further insights into speciation of conifers. J. Biogeogr.,2015. 42: 315-327.
2014
72. Lu Y,Ran J-H,Guo D-M,Yang Z-Y,Wang X-Q*. Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PLoS One,2014. 9: e107679.
71. Wang X-Q*,Ran J-H. Evolution and biogeography of gymnosperms. Mol. Phylogenet. Evol.,2014. 75: 24-40.
70. Liu L,Hao Z-Z,Liu Y-Y,Wei X-X*,Cun Y-Z,Wang X-Q. Phylogeography of Pinus armandii and its relatives: Heterogeneous contributions of geography and climate changes to the genetic differentiation and diversification of Chinese white pines. PLoS One,2014. 9: e85920.
69. Nazaire M,Wang X-Q,Hufford L. Geographic origins and patterns of radiation of Mertensia (Boraginaceae). Amer. J. Bot.,2014. 101: 104-118.
2013
68. Ran J-H*,Shen T-T,Liu W-J,Wang X-Q*. Evolution of the bHLH genes involved in stomatal development: Implications for the expansion of developmental complexity of stomata in land plants. PLoS One,2013. 8: e78997.
67. Qin A-L,Wang M-M,Cun Y-Z,Yang F-S,Wang S-S,Ran J-H,Wang X-Q*. Phylogeographic evidence for a link of species divergence of Ephedra in the Qinghai-Tibetan Plateau and adjacent regions to the Miocene Asian aridification. PLoS One,2013. 8: e56243.
2012
66. Gao H,Guo D-M,Ran J-H*,Wang X-Q. Evolution of the 4-coumarate: coenzyme A ligase (4CL) gene family: Conserved evolutionary pattern and two new classes in gymnosperms. J. Syst. Evol.,2012. 50: 195-205.
65. Yang Z-Y,Ran J-H,Wang X-Q*. Three genome-based phylogeny of Cupressaceae s.l.:Further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Mol. Phylogenet. Evol.,2012. 64: 452-470.
64.Guo Y-Y,Luo Y-B,Liu Z-J,Wang X-Q*. Evolution and biogeography of the slipper orchids: Eocene vicariance of the conduplicate genera in the Old and New World tropics. PLoS One,2012. 7: e38788.
63. Yang F-S*,Qin A-L,Li Y-F,Wang X-Q*. Great genetic differentiation among populations of Meconopsis integrifolia and its implication for plant speciation in the Qinghai-Tibetan Plateau. PLoS One,2012. 7: e37196.
2011
62. Zhang W,Wang X-Q,Li Z-Y*. The protective shell: sclereids and their mechanical function in corollas of some species of Camellia (Theaceae). Plant Biol.,2011. 13: 688-692.
2010
61. Ran J-H,Wang P-P,Zhao H-J,Wang X-Q*. A test of seven candidate barcode regions from the plastome in Picea (Pinaceae). J. Integr. Plant Biol.,2010. 52: 1109-1126.
60. Guo D-M,Ran J-H,Wang X-Q*. Evolution of the cinnamyl/sinapyl alcohol dehydrogenase (CAD/SAD) gene family: the emergence of real lignin is associated with the origin of bona fide CAD. J. Mol. Evol.,2010. 71: 202-218.
59. Cun Y-Z,Wang X-Q*. Plant recolonization in the Himalaya from the southeastern Qinghai-Tibetan Plateau: Geographical isolation contributed to high population differentiation. Mol. Phylogenet. Evol.,2010. 56: 972-982.
58. Wei X-X*,Yang Z-Y,Li Y,Wang X-Q*. Molecular phylogeny and biogeography of Pseudotsuga (Pinaceae):Insights into the floristic relationship between Taiwan and its adjacent areas. Mol. Phylogenet. Evol.,2010. 55: 776-785.
57.Ran J-H,Gao H,Wang X-Q*. Fast evolution of the retroprocessed mitochondrial rps3 gene in Conifer II and further evidence for the phylogeny of gymnosperms. Mol. Phylogenet. Evol.,2010. 54: 136-149.
2009
56.Wen J*,Xiang Q-Y,Qian H,Li J,Wang X-Q,Ickert-Bond S-M. Intercontinental and intracontinental biogeography—patterns and methods. J. Syst. Evol.,2009. 47: 327-330.
2008
55. Yang F-S,Li Y-F,Ding X,Wang X-Q*. Extensive population expansion of Pedicularis longiflora (Orobanchaceae) on the Qinghai-Tibetan Plateau and its correlation with the Quaternary climate change. Mol. Ecol.,2008.17: 5135-5145.
54. Peng D,Wang X-Q*. Reticulate evolution in Thuja inferred from multiple gene sequences: implications for the study of biogeographical disjunction between eastern Asia and North America. Mol. Phylogenet. Evol.,2008. 47: 1190-1202.
53. Hong D-Y*,Zhang D-M,Wang X-Q,Koruklu S-T,Tzanoudakis D. Relationships and taxonomy of Paeonia arietina G. Anderson complex (Paeoniaceae) and its allies. Taxon,2008.57: 922-932.
2007
52. Kan X-Z,Wang S-S,Ding X,Wang X-Q*. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. Mol. Phylogenet. Evol.,2007. 44: 765-777.
51. Qiao C-Y,Ran J-H,Li Y,Wang X-Q*. Phylogeny and biogeography of Cedrus (Pinaceae) inferred from sequences of seven paternal chloroplast and maternal mitochondrial DNA regions. Ann. Bot.,2007. 100: 573-580.
50. Hong D-Y,Wang X-Q,Zhang D-M,Koruklu S-T. Paeonia daurica Andrews or P. mascula ssp. triternata (Pall. ex DC.) Stearn & P. H. Davis (Paeoniaceae)?Bot. J. Linn. Soc.,2007. 154: 1–11.
49. Yang F-S,Wang X-Q*. Extensive length variation in the cpDNA trnT-trnF region of parasitic Pedicularis and its phylogenetic implications. Pl. Syst. Evol.,2007. 264: 251-264.
2005-2006
48.Ran J-H,Wei X-X,Wang X-Q*. Molecular phylogeny and biogeography of Picea (Pinaceae):implications for phylogeographical studies using cytoplasmic haplotypes. Mol. Phylogenet. Evol.,2006. 41: 405-419.
47.Hong D-Y *,Wang X-Q. The identity of Paeonia corsica SIEBER ex TAUSCH (Paeoniaceae),with special reference to its relationship with P. mascula (L.) MILL. Feddes Repertorium, 2006. 117: 65-84.
46.Hong D-Y,Wang X-Q,Zhang D-M,Koruklu S-T. On the circum-scription of Paeonia kesrouanensis,an east Mediterranean peony. Nord. J. Bot.,2005. 23: 395-400.
2004
45. Wei X-X,Wang X-Q*. Recolonization and radiation in Larix (Pinaceae):evidence from nuclear ribosomal DNA paralogues. Mol. Ecol.,2004. 13: 3115-3123.
44. Wei X-X,Wang X-Q*. Evolution of 4-coumarate: coenzyme A ligase (4CL) gene and divergence of Larix (Pinaceae). Mol. Phylogenet. Evol.,2004. 31: 542-553.
43. Hong D-Y,Wang X-Q,Zhang D-M. Paeonia saueri (Paeoniaceae),a new species from the Balkans. Taxon,2004. 53: 83-90.
2003
42. Wei X-X,Wang X-Q*. Phylogenetic split of Larix: evidence from paternally inherited cpDNA trnT-trnF region. Pl. Syst. Evol.,2003. 239: 67-77.
41. Wei X-X,Wang X-Q*,Hong D-Y. Marked intragenomic heterogeneity and geographical differentiation of nrDNA ITS in Larix potaninii (Pinaceae). J. Mol. Evol.,2003. 57: 623-635.
40.Yang F-S,Wang X-Q*,Hong D-Y. Unexpected high divergence in nrDNA ITS and extensive parallelism in floral morphology of Pedicularis (Orobanchaceae). Pl. Syst. Evol.,2003. 240: 91-105.
39.Song B-H,Wang X-Q*,Wang X-R,Ding K-Y,Hong D-Y. Cytoplasmic composition in Pinus densata and population establishment of the diploid hybrid pine. Mol. Ecol.,2003. 12: 2995-3001.
38. Liu Z-L,Zhang D,Wang X-Q,Ma X-F,Wang X-R. Intragenomic and interspecific 5S rDNA sequence variation in five Asian pines. Amer. J. Bot.,2003. 90: 17-24.
37. Yang F-S,Hong D-Y,Wang X-Q. A new species and a new specific synonym of Pedicularis (Scrophulariaceae) from the Hengduan Mountains,China. Novon,2003. 13: 363-367.
2002
36. Song B-H,Wang X-Q*,Wang X-R,Sun L-J,Hong D-Y,Peng P-H. Maternal lineages of Pinus densata,a diploid hybrid. Mol. Ecol.,2002. 11: 1057-1063.
2001
35. Song B-H,Wang X-Q*,Li F-Z,Hong D-Y. Further evidence for paraphyly of the Celtidaceae from the chloroplast gene matK. Pl. Syst. Evol.,2001. 22: 107-115.
34. Tank D-C,Wang X-Q,Sang T. Recent transfers of cinnamyl alcohol dehydrogenase genes between conifers diverged 200 million years ago. Amer J. Bot.,2001. 88 (suppl.):572.
33. 汪小全. MADS-box基因的进化与植物生殖器官形态建成. 见李承森主编,《植物科学进展》,Vol 4,2001,北京,高等教育出版社,P3-14.
2000
32. Wang X-Q,Tank D-C,Sang T. Phylogeny and divergence times in Pinaceae: evidence from three genomes. Mol. Biol. Evol.,2000. 17: 773-781.
31. 汪小全,舒艳群. 红豆杉科及三尖杉科的分子系统发育─兼论竹柏属的系统位置. 植物分类学报,2000. 38:01-210.
30. 汪小全. 松科分子系统学与分子进化研究进展. 见李承森主编,《植物科学进展》,Vol 3,2000,北京,高等教育出版社,P81-89.
29. 刘忠,汪小全*,陈之端,林祁,路安民. 五味子科的系统发育:核糖DNA ITS区序列证据. 植物学报,2000. 42: 758-761.
28. 马小军,汪小全,徐昭玺,肖培根,洪德元. 人参不同栽培群体遗传关系的RAPD分析. 植物学报,2000. 42: 587-590.
27. 宋葆华,陈之端,汪小全,李法曾. 中国苋属nrDNA 的ITS序列分析及其系统学意义. 植物学报,2000. 42: 1184-1189.
26. 马小军,汪小全,肖培根,洪德元. 野山参与栽培参rDNA内录间隔区(ITS)序列比较。 中国中药杂志,2000. 25: 206-209.
25. 马小军,汪小全,肖培根,洪德元. 国产人参种质资源的研究进展.中国药学杂志,2000. 35: 289-292.
1999
24. Feng Y-X,Chen Z-D,Wang X-Q,Pan K-Y,Hong D-Y. A taxonomical revision of the Loropetalum-Tetrathyrium complex and its systematic position in Hamamelidoideae inferred from ITS sequences. Taxon,1999. 48: 689-700.
23. 马小军,汪小全,孙三省,肖培根,洪德元.野生人参RAPD指纹的研究.药学学报,1999. 34: 312-316.
22. 马小军,汪小全,蔡美琳,孙三省,肖培根. 野山参微量DNA提取方法的研究. 中国中药杂志,1999. 24: 205-207.
1998
21. Wang X-Q,Han Y,Hong D-Y. A molecular systematic study of Cathaya,a relic genus of the Pinaceae in China. Pl. Syst. Evol.,1998. 213: 165-172.
20. Wang X-Q,Han Y,Hong D-Y. PCR-RFLP analysis of the chloroplast gene trnK in the Pinaceae,with special reference to the systematic position of Cathaya. Is. J. Plant Sci.,1998. 46: 265-271.
19. Wang X-Q,Hong D-Y. Molecular phylogenetic,morphological,and biogeographic evidence for the origin of the genus Actaea within the genus Cimicifuga (Ranunculaceae). Am. J. Bot.,1998. 85 (suppl.):476.
18. Chen Z-D,Wang X-Q,Sun H-Y,Han Y,Zou Y-P,Lu A-M. Systematic position of the Rhoipteleaceae: evidence from DNA sequences of rbcL gene. Acta Phytotax. Sin.,1998. 36: 1-7.
17. 汪小全,李振宇. rDNA片段的序列分析在苦苣苔亚科系统学研究中的应用. 植物分类学报,1998. 36: 97-105.
16. 汪小全,邓峥嵘,洪德元. 铁破锣属的系统位置-ITS(nrDNA)序列证据. 植物分类学报,1998. 36::403-410.
15. 汪小全,洪德元. 分子系统学研究进展. 见李承森主编,《植物科学进展》,1998. Vol. 1,北京,高等教育出版社,P16-30.
14. 俸宇星,汪小全,潘开玉,洪德元. rbcL基因序列分析对连香树科和交让木科系统位置的重新评价--兼论低等金缕梅类的关系. 植物分类学报,1998. 36: 411-422.
13. 马小军,汪小全,邹喻苹,肖培根,洪德元. 人参RAPD指纹鉴定的毛细管PCR方法. 中草药,1998. 29: 191-194.
12. 马小军,汪小全,肖培根. 人参RPAD产物的限制性内切酶消化. 中草药,1998. 29: 625-627.
1997
11. Wang X-Q,Zou Y-P,Zhang D-M,Hong D-Y,Liu Z-Y. Genetic diversity analysis by RAPD in Cathaya argyrophylla Chun et Kuang. Science In China (Series C),1997. 40: 145-151.
10. 汪小全,韩英,邓峥嵘,洪德元. 松科系统发育的分子生物学证据. 植物分类学报,1997. 35: 97-106.
9. 汪小全,洪德元. 植物分子系统学近5年进展概况. 植物分类学报,1997. 35: 465-480.
1996
8. 汪小全,邹喻苹,张大明,洪德元,刘正宇. 银杉遗传多样性的RAPD分析. 中国科学(C辑),1996. 26: 436-441.
7. 汪小全,邹喻苹,张大明,张志宪,洪德元. RAPD应用于遗传多样性和系统学研究中的问题. 植物学报,1996. 38: 954-962.
1992-1995
6. 裴颜龙,邹喻苹,尹蓁,汪小全,张志宪,洪德元. 矮牡丹与紫斑牡丹RAPD分析初报. 植物分类学报,1995. 33: 350-356.
5. Wang X-Q,Li Z-Y,Hong D-Y. A karyomorphological study of nine species in four genera of Ranunculaceae. Cathaya,1994. 6: 43-56.
4. 邹喻苹,汪小全,雷一丁,裴颜龙,张志宪. 几种濒危植物及其近缘类群总DNA的提取与鉴定. 植物学报,1994. 36: 528-533.
3. Wang X-Q,Hong D-Y,Li Z-Y. A study on pollen and seed-coat in the tribe Cimicifugeae and some allied genera (Ranunculaceae). Cathaya,1993. 5: 131-149.
2. 杨亲二,汪小全,洪德元. 国产7种乌头属植物的核型研究. 植物资源与环境,1993. 2: 33-38.
1. 张定成,邵建章,汪小全. 安徽南部贝母属植物核型研究. 植物分类学报,1992. 30: 62-68.