姓  名: 景海春
职务/职称: 研究员、研究组组长
联系电话: (86)-010-62836576
电子邮件: hcjing@ibcas.ac.cn
个人网页: http://klpr.ibcas.ac.cn/kxyj/yjzjs/ylzz/202102/t20210208_625642.html
课 题 组: 能源植物分子设计育种研究组
景海春,男,博士,研究员,博士生导师。

1989年在兰州大学理学硕士学位,2004年在荷兰格罗宁根大学获得理学博士学位。1989-1996年在天津市农业科学院土壤肥料研究所历任研究助理、副研究员、副所长;1996-1999年在荷兰DLO-CPROPRI)植物繁育系做访问学者;2004-2008年在英国洛桑研究所植物与微生物系从事博士后科研工作;2008年到中国科学院植物研究所工作至今。现任能源作物分子设计育种研究组组长、呼伦贝尔草牧业试验站站长、中国科学院生态草牧业工程实验室主任。目前指导博士后1人,在读博士生8人,硕士生5人,在Nature PlantsGenome BiologyPlant CellPlant PhysiologyBiotechnology for BiofuelsTheoretical and Applied GeneticsMolecular Plant等主流杂志发表相关SCI论文50余篇。主持承担科技部、科学院、基金委、转基因重大专项、中外国际合作项目等40余项。2020年获得中国科学院科技促进发展奖,获得中国科学院第五届科苑名匠荣誉称号。

主要研究方向:

  1. 高粱分子育种研究

以甜高粱为主要研究材料,利用群体遗传学和功能基因组学等手段研究甜高粱驯化育种过程中的基因组变异、重要农艺性状如茎秆持汁性、糖积累以及生物量等的调控机制,挖掘重要分子元件并进行分子设计育种。

  1. 生态草牧业科技示范

在呼伦贝尔、云南昭通、黄三角等地开展生态草牧业示范区建设,主要聚焦天然草地恢复、人工草地建设、牧草新品种选育、畜品种改良、饲草高效加工等方面的研究工作。

主持和参加的科研项目:

[1] “主要牧草优异性状形成的分子基础”国家重点研发计划(2022.9-2027.8),主持人:景海春

[2] “一带一路”沿线国家草牧业发展与海外粮仓建设的研究”中国科学院ANSO国际合作项目(2022.12-2024.11),主持人:景海春

[3]“高粱Dry基因调控的下游基因的挖掘和功能分析”国家自然科学基金委面上项目(2021.1-2024.12),主持人:景海春

[4] “主要草畜分子育种与新品种培育”山东省重点研发计划(2021.11-2024.10),主持人:郝怀庆

[5]“寒区苜蓿抗冻丰产生态栽培及共性关键技术研究”中国科学院STS计划(2020.01-2021.06),主持人:刘智全

[6]“核心示范区与平台基地建设”中国科学院先导专项(2020.11-2025.11),主持人:景海春

[7]“高粱品种引种选育与研发基地建设”横向合作项目(2020.11-2021.11),主持人:景海春

[8]“高粱泛基因组与遗传多样性”科技部重点研发计划”(2018.07-2022.12),主持人:吴小园

[9]“中国科学院生态草牧业工程实验室”中国科学院项目(2019.01-2021.12),主持人:景海春

[10]“高产高效人工草地建植技术与示范”中国科学院科技扶贫项目(2019.07-2022.07),主持人:刘智全

[11]“调控高粱种子胚乳糊粉层和淀粉胚乳分化的关键基因的挖掘”中国科学院国际合作项目(2019.01-2021.12),主持人:景海春

[12]“黄河三角洲耐盐作物良种选育关键技术与规模化制种”科技部重点研发计划(2019.07-2022.12),主持人:景海春

[13]“玉米高产优质性状的分子基础”中国科学院先导专项(2019.10-2024.10),主持人:郝怀庆

研究论文及著作(注*为通讯作者):

2023

Wang, L.D., Shang, L., Wu, X.Y., Hao, H.Q., Jing, H.C.* 2023. Genomic architecture of leaf senescence in sorghum (Sorghum bicolor). Theoretical and Applied Genetics, 2023. 136: 45.

2022

Wu, X.Y., Liu, Y.M,. Luo, H., Shang, L., Leng, C.Y., Liu, Z.Q., Li, Z.G., Lu, X.C., Cai, H.W., Hao, H.Q.*, Jing, H.C.* 2022. Genomic footprints of sorghum domestication and breeding selection for multiple end uses. Molecular Plant, 15:537-551.

2021

Liu, Y.M. #, Wang, Z.H.#, Wu, X.Y., Zhu, J.W., Luo, H., Tian, D.M., Li, C.P., Luo, J.C., Zhao, W.M.*, Hao, H.Q.*, Jing, H.C. 2021. SorGSD: updating and expanding the sorghum genome science database with new contents and tools. Biotechnology for Biofuels, 14: 165.

Li, Z.G., Li, K., Yang, X.H., Hao, H.Q.*, Jing, H.C.2021. Combined QTL mapping and association study reveals candidate genes for leaf number and flowering time in maize. Theoretical and Applied Genetics, https://doi.org/10.1007/s00122-021-03907-x.

Tao, Y.#, Luo H#, Jiabao Xu J.#, Cruickshank, A., Zhao, X. Teng, F., Hathorn, A. Wu, X.Y., Liu, Y.M., Shatte, T., Jordan, D.*, Jing, H.C.*, Mace, M.* .2021. Extensive variation within the pan-genome of cultivated and wild sorghum. Nature Plants, https://doi.org/10.1038/s41477-021-00925-x.

Feng, X#., Liu, L.L.#, Li, Z.G., Sun, F., Wu, X.Y., Hao, D.Y., Hao, H.Q. *, Jing, H.C.* .2021. Potential interaction between autophagy and auxin during maize leaf senescence implicated by population genetics and high resolution gene expression profiling.Journal of Experimental Botany, doi:10.1093/jxb/erab094.

Hao, H.Q.*, Li, Z.G., Leng, C.Y., Lu, C., Luo, H., Liu, Y.M., Wu, X.Y., Liu, Z.Q., Shang, L., Jing, H.C.* .2021. Sorghum breeding in the genomic era: opportunities and challenges. Theoretical and Applied Genetics, DOI: 10.1007/s00122-021-03789-z.

2020

LiuZ.Q.#, LiH.L.#, ZengX.J., LuC., FuJ.Y., GuoL.J., KimaniW.M., YanH.L., HeZ.Y., HaoH.Q.*, Jing, H.C. .2020. Coupling phytoremediation of cadmium-contaminated soil with safe crop production based on a sorghum farming system. Journal of Cleaner Production, 275, 123002.

Kimani, W., Zhang, L.M., Wu, X.Y., Hao, H.Q.*, Jing, H.C.* .2020. Genome-wide association study reveals that different pathways contribute to grain quality variation in sorghum (Sorghum bicolor). BMC Genomics, 21: 112.

Chi, Y.H., Kimani, W., Liu, Z.Q., Wu, X.Y., Shang, L., Zhang, L.M., Jing, H.C., Hao, H.Q.* .2020. Vacuolar invertase genes SbVIN1 and SbVIN2 are differently associated with stem and grain traits in sorghum (Sorghum bicolor). Crop Journal, 8: 299-312.

Yan, Z.Z., Zhang X.Y.*, Rashid, M.A. Li, H.J., Jing, H.C., Hochman, Z. 2020. Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change. Agricultural Systems, 178, 102745.

2019

Hu, Z.M., Zhao, Z., Zhang, Y., Jing, H.C., Gao, SQ*, Fang, J.Y. .2019. Does 'Forage-Livestock Balance' policy impact ecological efficiency of grasslands in China? Journal of Cleaner Production, 207:343-349.

2018

Zhang, L.M., Leng, C.Y., Luo H., Wu, X.Y., Liu, Z.Q., Zhang, Y.M., Zhang, H., Xia, Y., Shang, L., Liu, C.M., Hao, D.Y., Zhou, Y.H., Chu, C.C., Cai, H.W.*, Jing, H.C.* .2018. Sweet sorghum originated through selection of Dry, a plant-specific NAC transcription factor gene. Plant Cell, 30: 2286-2307.

Chen, J., Zhang, L., Zhu, M., Han, L., Lv, Y., Liu, Y., Li, P., Jing, H.C.*, Cai, H.W.*, .2018. Non-dormant Axillary Bud 1 regulates axillary bud outgrowth in sorghum. Journal of Integrative Plant Biology, 60 (10): 938-955. (封面文章)

2016

Luo, H., Zhao, W.M., Wang, Y.Q., Xia, Y., Wu, X.Y., Zhang, L.M., Tang, B.X., Zhu, J.W., Fang, L., Du, Z.L., Bekele, W.A., Tai, S.S., Jordan, D.R., Godwin, I.D., Snowdon, R.J., Mace, E.S., Luo, J.C.*, Jing, H.C.* .2016. SorGSD: a sorghum genome SNP database. Biotechnology for Biofuels, 9: 1-9.

Wu, X.Y., Hu, W.J., Luo, H., Xia, Y., Zhao, Y., Wang, L.D., Zhang, L.M., Luo, J.C., and Jing, H.C.* .2016. Transcriptome profiling of developmental leaf senescence in sorghum (Sorghum bicolor). Plant Molecular Biology, 92: 1-26.

2015及以前

Shen, X., Liu, Z.Q., Mocoeur, A., Xia, Y., and Jing, H.C.* .2015. PAV markers in Sorghum bicolour: genome pattern, affected genes and pathways, and genetic linkage map construction. Theoretical and Applied Genetics, 128: 623-637.

Zheng, L.Y.#*, Shang, L.#, Chen, X., Zhang, L.M., Xia, Y., Smith, C., Bevan, M.W., Li, Y.H., and Jing, H.C.* .2015. Tang1, encoding a symplekin_c domain-contained protein, influences sugar responses in Arabidopsis. Plant Physiology, 168: 1000-1012.

Mocoeur, A., Zhang, Y.M., Liu, Z.Q., Shen, X., Zhang, L.M., Rasmussen, S.K., and Jing, H.C.* .2015. Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet sorghum (Sorghum bicolor). Theoretical and Applied Genetics, 128: 1685-1701.

Schippers, J.H.#*, Schmidt, R.#, Wagstaff, C., and Jing, H.C.* .2015. Living to die and dying to live: the survival strategy behind leaf senescence. Plant Physiology, 169: 914-930.

Anami, S.E., Zhang, L.M., Xia, Y., Zhang, Y.M., Liu, Z.Q., and Jing, H.C.* .2015. Sweet sorghum ideotypes: genetic improvement of stress tolerance. Food and Energy Security, 4: 3-24.

Anami, S.E., Zhang, L.M., Yan, X., Zhang, Y.M., Liu, Z.Q., and Jing, H.C.* .2015. Sweet sorghum ideotypes: genetic improvement of the biofuel syndrome. Food and Energy Security, 4: 159-177.

Zhang, L.M., Luo, H., Liu, Z.Q., Zhao, Y., Luo, J.C., Hao D.Y.*, and Jing, H.C.* .2014. Genome-wide patterns of large-size presence/ absence variants in sorghum. Journal of Integrative Plant Biology, 56: 24-37.

Wang, T.T., Ren, Z.J., Liu, Z.Q., Feng, X., Guo, R.Q., Li, B.G., Li, L.G.*, and Jing, H.C.* .2014. SbHKT1;4, a member of the high-affinity potassium transporter gene family from sorghum bicolor, functions to maintain optimal Na+/k+ balance under Na+ stress. Journal of Integrative Plant Biology, 56: 315–332.

Li, M.#, Feng, S.#, Wu, Z., Li, Y., Fan, C., Zhang, R., Zou, W., Tu, Y., Jing, H.C., Li, S., Peng L.* .2014. Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse. Bioresource Technology,167: 14-23.

Zhang, L.M., Liu, X.G., Qu, X.N., Yu, Y., Han, S.P., Dou, Y., Xu, Y.Y., Jing, H.C.*, and Hao, D.Y.* .2013. Early transcriptomic adaptation to Na2CO3 stress altered the expression of a quarter of the total genes in the maize genome and exhibited shared and distinctive profiles with NaCl and high pH stresses. Journal of Integrative Plant Biology, 55: 1147-1165.

Tahir, J., Watanabe, M., Jing, H.C., Hunter, D.A., Tohge, T., Nunesnesi, A., Brotman, Y., Fernie, A.R., Hoefgen, R., Dijkwel, P.P.* .2013. Activation of R-mediated innate immunity and disease susceptibility is affected by mutations in a cytosolic O-acetylserine (thiol) lyase in arabidopsis. The Plant Journal, 73: 118-130.

Wu, X.Y., Kuai, B.K., Jia, J.Z., and Jing, H.C.* .2012. Regulation of leaf senescence and crop genetic improvement. Journal of Integrative Plant Biology, 54: 936-952.

Zheng, L.Y.#, Guo, X.S.#, He, B.#, Sun, L.J.#, Peng Y., Dong S.S., Liu, T.F., Jiang, S., Ramachandran S., Liu, C.M., Jing, H.C.* .2011. Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biology,21: R114

Zheng, L.Y.#, Guo, X.S.#, He, B.#, Sun, L.J.#, Peng, Y., Dong, S.S., Liu, T.F., Jiang S., Ramachandran S., Liu, C.M., Jing, H.C.* .2011. Genome data from sweet and grain sorghum (Sorghum bicolor). GigaScience.

Parry, M.A., Jing, H.C.* .2011. Bioenergy plants: hopes, concerns and prospectives. Journal of Integrative Plant Biology, 53:94-95.

Shirzadian-Khorramabad R.#, Jing, H.C.#, Everts G.E., Schippers J.H.M., Hille J., Dijkwel P.P.* .2010. A mutation in the cytosolic O-acetylserine (thiol) lyase induces a genome-dependent early leaf death phenotype in Arabidopsis. BMC Plant Biology, 10: 80.

Jing, H.C.*, Bayon, C., Kanyuka, K., Berry, S., Wenzl, P., Huttner, E., Kilian, A., Hammond-Kosack, K.E.* .2009. DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. BMC Genomics, 10: 458.

Hofinger, B.J., Jing, H.C., Hammond-Kosack, K.E., Kanyuka, K.* .2009. High-resolution melting analysis of cDNA-derived PCR amplicons for rapid and cost-effective identification of novel alleles in barley. Theoretical and Applied Genetics, 119:851-865.

Jing, H.C., Hebeler, R., Oeljeklaus, S., Sitek, B., Stuehler, K., Meyer ,H.E., Sturre, M.J.G., Hille, J., Warscheid, B., Dijkwel, P.P.* .2008. Early leaf senescence is associated with an altered cellular redox balance in Arabidopsis cpr5/old1 mutants. Plant Biology, 10: 85-98.

Jing, H.C., Dijkwel, P.P.* .2008. CPR5: A Jack of all trades in plants. Plant signaling & behavior, 3: 562.

Jing, H.C., Lovell, D., Gutteridge, R., Jenk, D., Kornyukhin, D., Mitrofanova, O.P., Kema, G.H., HammondKosack, K.E.* .2008. Phenotypic and genetic analysis of the Triticum monococcum–Mycosphaerella graminicola interaction. New Phytologist, 179:1121-1132.

Jing, H.C., Anderson, L., Sturre, M.J., Hille, J., Dijkwel, P.P.* .2007. Arabidopsis CPR5 is a senescence-regulatory gene with pleiotropic functions as predicted by the evolutionary theory of senescence. Journal of Experimental Botany, 58:3885-3894.

Jing, H.C., Kornyukhin, D., Kanyuka, K., Orford, S., Zlatska, A., Mitrofanova, O.P., Koebner, R., Hammond-Kosack, K.* .2007. Identification of variation in adaptively important traits and genome-wide analysis of trait–marker associations in Triticum monococcum. Journal of Experimental Botany, 58:3749-3764.

Schippers, J.H., Jing, H.C., Hille, J., Dijkwel, P.P. .2007 Developmental and hormonal control of leaf senescence. Senescence processes in plants, 145-170.

Jing, H.C.#, Schippers, J.H.#, Hille, J., Dijkwel, P.P.* .2005. Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. Journal of Experimental Botany, 56:2915-2923.

Jing, H.C..2005. Regulation of leaf senescence in Arabidopsis: isolation and characterisation of onset of leaf death mutants. University Library Groningen, 115:281-293

Jing, H.C, Hille, J., Dijkwel, P.P.* .2003. Ageing in plants: Conserved strategies and novel pathways. Plant Biology, 5:455-464.

Jing, H.C., Sturre, M.J., Hille, J., Dijkwel, P.P.* .2002. Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. The Plant Journal, 32:51-63.

中文文章

高树琴, 王竑晟, 段瑞, 景海春, 方精云* .2020. 关于加大在中低产田发展草牧业的思考. 中国科学院院刊, 35(2): 166-174.

高树琴, 胡兆民, 韩勇, 刘智全, 潘庆民, 段瑞, 钟瑾, 景海春* .2019. 生态草牧业在我国精准扶贫中的作用和潜力——中国科学院植物研究所科技扶贫实践与模式探索. 中国科学院院刊, 34(2): 223-230.

方精云*, 景海春, 张文浩, 高树琴, 段子渊, 王竑晟, 钟瑾, 潘庆民, 赵凯, 白文明, 李凌浩, 白永飞, 蒋高明, 黄建辉, 黄振英 .2018. 论草牧业的理论体系及其实践. 科学通报63 (17):1619-1631

薛勇彪,种康,韩斌,桂建芳,景海春.2018.创新分子育种科技支撑我国种业发展. 中国科学院院刊, 33(9): 893-897.

郝怀庆,刘丽丽,姚远,冯雪,李志刚,晁青,夏然,刘宏涛,王柏臣,秦峰,谢旗,景海春.2018. 分子模块设计育种技术在玉米育种中的应用及前景展望. 中国科学院院刊, 33(9):923-931.

景海春*, 刘智全, 张丽敏, 吴小园 .2018. 饲草甜高粱分子育种与产业化. 科学通报, 631664-1676

方精云*, 潘庆民, 高树琴, 景海春, 张文浩 .2017. “以小保大”原理:用小面积人工草地建设换取大面积天然草地的保护与修复. 草业科学, 33 (10):1913-1916

罗洪, 张丽敏, 夏艳, 吴小园, 王聪, 刘智全, 景海春* .2015. 能源植物高粱基因组研究进展.科技导报, 16: 17-26.

张丽敏, 刘智全, 陈冰嬬, 郝东云, 高士杰, 景海春* .2012. 我国能源甜高粱育种现状及应用前景.中国农业大学学报, 17:78-82.

专著章节

Anami, S.E., Zhang, Y.M., Zhang, L.X., Zhu, L., Jing, H.C.* .2017, Sorghum genetic transformation: current status and future target traits.

Anami, S.E., Luo, H., Xia, Y., Jing, H.C.* .2017, Sorghum genome mapping and its impact generated through public and private efforts.

Zhao, L., Yan, X.X., Wu, X.Y., Schippers, J.H.M.*, Hai-Chun Jing, H.C.* .2018, Phenotypic analysis and molecular markers of leaf senescence.

新品种和专利

科甜2号 景海春, 刘智全等. 2016年获得内蒙古自治区草品种登记(N056号)

科甜5号 景海春, 刘智全等. 2015-17年参加国家高粱产业体系在全国14个地区的区域试验和生产试验, 推荐登记

景海春, 王甜甜. 转基因植物. 专利号:ZL 201380079516.3

景海春, 张玉苗, 张丽敏, 朱莉, 刘智全. 一种农杆菌介导的甜高粱遗传转化方法. 专利号:ZL 201510441638.3

景海春, 郝怀庆, 冯雪. 两个调控玉米叶片衰老的主效QTL及其分子标记和应用. 申请号:202011115291.0

景海春, 郝怀庆, 刘丽丽. 一种玉米耐旱持绿和高效磷再动员能力的分子标记及应用. 申请号:202110139817.7