姓 名: | 王雷 |
---|---|
职务/职称: | 研究员、研究组组长 |
联系电话: | (86)-010-62836175 |
电子邮件: | wanglei@ibcas.ac.cn |
个人网页: | http://www.klpmp.ibcas.ac.cn/kydw/xbfhyqgfs/wl/202101/t20210108_611996.html |
课 题 组: | 植物生物钟与发育调控研究组 |
王雷,男,博士,研究员,博士生导师。 |
中共党员,所党委委员。1999年于东北师范大学获学士学位;2002年于吉林农业大学获硕士学位;2006年在中国科学院植物研究所获得博士学位。2006-2013年,在美国俄亥俄州立大学分子遗传学系从事博士后研究。2010年3月-2010年9月,在韩国浦项科技大学作访问学者。2013年11月到植物所工作。 2014年1月入选“国家海外青年人才计划”。2022年10月入选国家科技创新领军人才。现任中科院植物分子生理学重点实验室主任、中国科学院大学岗位教授、《植物学报》主编、中国细胞生物学学会生物节律分会副会长、中国植物学会常务理事、中国植物生理与植物分子生物学会理事,以及国际学术期刊Plant Cell and Environment与Frontiers in Plant Science杂志副主编、Journal of Circadian Rhythm编委等学术职务。在Proc. Natl. Acad. Sci. USA、The EMBO Journal、Nature Communications、The Plant Cell、Cell Reports、Nucleic Acids Research、Molecular Plant等期刊发表SCI收录论文40余篇。申报国内专利10项,授权3项。参与国际专著编写2部。 生物钟分子系统(Circadian molecular system)是生物体为了因应地球自转而产生的昼夜环境周期性的变化,从而进化出的协调细胞内基因表达,及代谢网络调控的分子系统。我们课题组以水稻、苜蓿和拟南芥等为主要研究对象,解析植物生物钟分子系统组成、及其对植物生长发育和非生物胁迫适应性的调控机理,主要包括对开花时间调控、耐盐碱调控等方面的分子机理研究。研究核心主要是围绕植物生物钟分子系统如何通过对环境信号的整合而实现对输出系统的控制,以期为提高农作物品质与产量提供时间生物学方面的理论依据和遗传资源。课题组主要研究方向为: 1)植物生物钟分子系统的组成解析及关键因子的多维度调控; 2)水稻生物钟分子系统的表观遗传调控机制; 3)生物钟协同调控水稻发育和盐碱耐受的遗传网络。 研究论文(*标记为通讯作者) 2024 Zuo Y#, Liu HB#, Li B#, Zhao H, Li XL, Chen JT, Wang L, Zheng QB, He YQ, Zhang JS, Wang MX, Liang CZ, Wang L*. 2024. The Idesia polycarpa genome provides insights into its evolution and oil biosynthesis. Cell Reports, 43(3): 113909. https://doi.org/10.1016/j.celrep.2024.113909 Chawla S, Oster H, Duffield GE, Maronde E, Guido ME, Chabot C, Dkhissi-Benyahya O, Provencio I, Goel N, Youngstedt SD, Zi Ching Mak N, Caba M, Nikhat A, Chakrabarti S, Wang L, Davis SJ*. 2024. Reflections on several landmark advances in circadian biology. Journal of Circadian Rhythms, 22(1): 1–11. https://doi.org/10.5334/jcr.236 2023 Yu YJ, Su C, He YQ, Wang L*, 2023. B-Box proteins BBX28 and BBX29 interplay with PSEUDO-RESPONSE REGULATORS to fine-tune circadian clock in Arabidopsis. Plant Cell & Environment,https://doi.org/10.1111/pce.14648 Xu H, Wang X, Wei J, Zuo Y, Wang L*, 2023. The Regulatory Networks of the Circadian Clock Involved in Plant Adaptation and Crop Yield. Plants, 12(9): 1897. https://doi: 10.3390/plants12091897 2022 He YQ, Yu YJ, Wang XL, Qin YM, Su C, Wang L*. 2022. Aschoff’s rule on circadian rhythms orchestrated by blue light sensor CRY2 and clock component PRR9. Nature Communications, 13:5869. Wang Y#, Su C#, Yu YJ#, He YQ, Wei H, Li N, Li H, Duan J, Li B, Li JG, Davis S, Wang L*. 2022. TIME FOR COFFEE regulates phytochrome A-mediated hypocotyl growth through dawn-phased signaling. ThePlant Cell, 34:2907-2924. Wei H, Xu H, Su C, Wang XL, Wang L*. 2022. Rice CIRCADIAN CLOCK ASSOCIATED 1 transcriptionally regulates ABA signaling to confer multiple abiotic stress tolerance. Plant Physiology, 190:1057-1073. Ronald J, Su C, Wang L, Davis SJ*. 2022. Cellular localization of Arabidopsis EARLY FLOWERING3 is responsive to light quality. Plant Physiology,190:1024–1036. 2021 Wei H, Wang XL, He YQ, Xu H, Wang L*. 2021. Clock component OsPRR73 positively regulates ricesalt tolerance by modulating OsHKT2;1-mediated sodium homeostasis. The EMBO Journal, 40: e105086. Yuan L#, Yu YJ#, Liu MM, Song Y, Li HM, Sun JQ, Wang Q, XieQG*, Wang L*, Xu XD*. 2021. BBX19 fine-tunes the circadian rhythm by interactingwith PSEUDO-RESPONSE REGULATOR proteins tofacilitate their repressive effect on morning-phasedclock genes. The Plant Cell, 33(8): 2602-2617. Tian WW#, Wang RY#, Bo CP, Yu YJ, Zhang YY, Shin GI, Kim WY, Wang L*.2021.SDC mediates DNA methylation-controlled clock paceby interacting with ZTL in Arabidopsis. Nucleic Acids Research, 49(7):3764-3780. Wang XL#, He YQ#, Wei H, Wang L*. 2021. A clock regulatory module is required for salt tolerance and control of heading date in rice. Plant Cell Environment, 44:3283-3301. (cover story). Zhang YY, Li N, Wang L*. 2021.Phytochrome interacting factor proteins regulate cytokinesis in Arabidopsis. Cell Reports, 35:109095. Li N, Bo CP, Zhang YY*, Wang L*.2021. PHYTOCHROME INTERACTING FACTORS PIF4 and PIF5 promote heat stress induced leaf senescence in Arabidopsis. Journal of Experimental Botany, 72(12):4577-4589. Su C, Wang Y, Yu YJ, He YQ, Wang L*.2021.Coordinative regulation of plants growth and development by light and circadian clock.aBIOTECH, 2:176–189. 2020 Wei H, Wang XL, Xu H, Wang L*. 2020. Molecular basis of heading date control in rice. aBIOTECH, 1:219-232. Li N#, Zhang YY#, He YQ, Wang Y, Wang L*. 2020. Pseudo Response Regulators regulate photoperiodic hypocotyl growth by repressing PIF4/5 transcription. Plant Physiology, 183(2): 686-699. Wang Y, He YQ, Su C, Zentella R, Sun TP, Wang L*. 2020. Nuclear localized O-fucosyltransferase SPY facilitates PRR5 proteolysis to fine-tune the pace of Arabidopsis circadian clock. Molecular Plant, 3: 446-458. (cover story). Wang Y#, Qin YM#, Li B, Zhang YY, Wang L*. 2020. Attenuated TOR signaling lengthens circadian period in Arabidopsis. Plant Signaling & Behavior, 2: e1710935. Kim TS, Wang L, Kim YJ, Somers DE*. 2020. Compensatory mutations in GI and ZTL may modulate temperature compensation in the circadian clock. Plant Physiology, 2: 1130-1141. 2019 Zhang YY, Bo CP, Wang L*. 2019. Novel crosstalks between circadian clock and jasmonic acid pathway finely coordinate the tradeoff among plant growth, senescence and defense. International Journal of Molecular Sciences, 20: 5254. Li B#, Wang Y#, Zhang YY, Tian WW, Chong K, Jang JC, Wang L*. 2019. PRR5, 7 and 9 positively modulate TOR signaling-mediated root cell proliferation by repressing TANDEM ZINC FINGER 1 in Arabidopsis. Nucleic Acids Research, 10: 5001-5015. 2018 Zhang YY, Wang Y, Wei H, Li N, Tian WW, Chong K, Wang L*. 2018. Circadian evening complex represses jasmonate-induced leaf senescence in Arabidopsis. Molecular Plant, 11, 326-337. (cover story). Wang Y, Zhang YY, Wang L*. 2018, Cross regulatory network between circadian clock and leaf senescence is emerging in higher plants. Frontiers in Plant Science, 9: 700. 魏华, 王岩, 刘宝辉, 王雷. 2018. 植物生物钟及其调控生长发育的研究进展. 植物学报, 53: 456-467. 2017 Cha JY, Kim J, Kim TS, ZengQN, Wang L, Lee SY, Kim WY, Somers DE*.2017. GIGANTEA acts as a co-chaperone with HSP90 to facilitate maturation of the client protein ZEITLUPE in the Arabidopsis circadian clock. Nature Communications, 8: 3. 2016 Wang L, Chong K. 2016. The essential role of cytokin in signaling in root apical meristem formation during somatic embryogenesis. Frontiers in Plant Science, 6: 1196-1200. 2015及以前 JiaYB, TianHY, Li HJ, Yu QQ, Wang L, Friml J, Ding ZJ. 2015. The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development. Journal of Experimental Botany, 4631-4642. Choudhary M, Nomura Y, Wang L, Nakagami H, Somers DE. 2015. Quantitative circadian phosphoproteomic analysis of Arabidopsis reveals extensive clock control of key components in physiological, metabolic, and signaling pathways. Molecular & Cellular Proteomics, 14: 2243-2260. Wang L, Kim J and Somers D*. 2013. Transcriptional corepressor TOPLESS comlexes with pseudoresponse regulator proteins and histone deacetylase to regulate circadian transcription. Proc. Natl. Acad. Sci. USA, 110(2):761-766. Kim Y, Lim J, Yeom M, Kim H, Kim J, Wang L, Somers D and Nam H*. 2013. ELF4 regulates GIGANTEA chromatin access through subnuclear sequestration. Cell Reports, 3:671-677. Zhang C, XuYY, GuoSY, Zhu JY, Huan Q, Liu HH, Wang L, LuoGZ, Wang XJ and Chong K*. 2012. Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genetics, 8(4): e1002686. Wang L and Chong K*. 2010. Auxinbrassinosteroids and G protein signaling. In Integrated G protein Signaling in Plants. Series of Signaling and Communication in Plants. page: 135-154 (Book chapter). Wang L, Fujiwara S and Somers D*. 2010. PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock. The EMBO Journal, 29(11):1903-1915. Li D, Wang L, Wang M, Xu Y, Luo W, Liu Y, Xu Z, Li J and Chong K*. 2009. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnology Journal, 7:791–806. Wang L, Xu Y, Zhang C Ma QB, Kim J, XuZH and Chong K*. 2008. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS One. 3(10):e3521. Fujiwara S, Wang L, Han L, Suh SS, Salomé P, McClung R and Somers D*. 2008. Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins. Journal of Biological Chemistry, 283(34):23073-83. (Co-first author, cover story). Wang L, XuYY, Li J, Powell R, XuZH and Chong K*. 2007. Transgenic rice plants ectopically expressing AtBAK1 are semi-dwarfed and hypersensitive to 24-epibrassinolide. Journal of Plant Physiology, 164 (5):655-64. Liu KM, Wang L, Xu YY, Chen N, Ma QB, Li F and Chong K*. 2007. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 226(4):1007-16. Wang L, XuYY, Ma QB, Li D, Xu ZH and Chong K*. 2006. Heterotrimeric G protein alpha subunit is involved in rice brassinosteroid response. Cell Research, 16(12):916-922. Wang ZY*, Wang QM, Chong K, Wang FR, Wang L, Bai MY and Jia CG. 2006. The brassinosteroid signal transduction pathway. Cell Research, 16(5): 427-34. |