姓  名: 陈彤
职务/职称: 研究员
联系电话: (86)-010-62836211
电子邮件: chentong@ibcas.ac.cn
个人网页: https://people.ucas.ac.cn/~chentong
课 题 组: 果实逆境应答与生物控制技术研究组
陈彤,男,博士,研究员,博士生导师。

2000年和2003年于河北大学生命科学学院获得理学学士和硕士学位,2007年于中国科学院植物研究所获得理学博士学位。同年留所工作至今,任助理研究员、副研究员、研究员。200920102012年分别赴德国波恩大学和日本富山大学开展合作研究。主持中国科学院战略性先导科技专项(A类)子课题、国家自然科学基金面上项目、国家重点研发计划子课题、农业部转基因专项子课题等科研项目,参与国家自然科学基金重点项目、科技部国际合作项目等项目研究工作。

近年来聚焦果蔬品质及安全的生物学基础研究,揭示了膜蛋白在转录及翻译后水平调控果实品质维持的分子机制,解析了类受体激酶SlFERL识别致病因子BcPG1调控寄主对病原真菌抗性应答的机理,为果蔬品质及抗性的精准调控技术研发提供参考。发表学术论文90余篇,其中以第一或通讯作者(含共同)在New PhytologistEngineeringPlant PhysiologyFood Chemistry等主流学术刊物发表论文42篇,获得国家授权发明专利11项,参与编撰中英文论著5部,制订内蒙古自治区、辽宁省地方标准各1项、塔吉克斯坦农产品贮藏保鲜技术规程3项,获得省部级奖励3项。国际园艺学会(ISHS)会员,兼任BMC Plant BiologyFrontier in Plant Science等主流期刊编委。

主要研究方向

  1. 果实品质形成与维持的生物学基础:挖掘调控果实品质及抗性的关键基因,阐明果实品质调控因子的功能,解析果实品质形成及保持的分子机制。
  2. 园艺作物与病原真菌互作的分子机制:以番茄等模式及特色园艺作物为材料,揭示调控园艺作物与病原真菌相互作用的分子细胞学机制。
  3. 果蔬防病保鲜技术研发与推广应用。

主持和参加的科研项目

  1. 中国科学院前瞻战略科技先导专项(A类先导专项)子课题,耐盐碱适生作物品种创制,主持
  2. 国家自然基金重点项目:果实抗病性应答与采后品质维持的分子关联及调控机制,参加
  3. 国家自然基金重点项目:活性氧调控果实采后品质的分子网络及其机制,参加
  4. 国家自然基金面上项目:SlFERLCOP9复合体互作调控番茄果实对灰霉抗性应答的机理研究,主持
  5. 国家自然基金面上项目:类受体激酶SlFERL调节番茄果实成熟及抗性应答的机理研究,主持
  6. 国家自然基金面上项目:质膜微区蛋白Remorins调节果实抗病性应答的机理研究,主持
  7. 北京市自然基金面上项目:番茄类受体激酶SlFERL调节果实应答灰霉侵染的分子机理研究,主持
  8. 国家重点研发项目子课题:果蔬品质变化与调控技术研发与示范,主持
  9. 国家重点基础研究发展计划子课题:生物与非生物因子诱发果实采后衰老的生物学基础,主持
  10. 农业部转基因专项子课题:胡杨耐盐基因和调控元件的克隆及其功能验证,主持

代表性论文#共同第一作者,*通讯作者):

2024

  1. Huang XH#, Liu YH#, Jia YH, Ji LZ, Luo XM*, Tian SP, Chen T*. 2024. FERONIA homologs in stress responses of horticultural plants: current knowledge and missing links. Stress Biology, 4: 28
  2. Huang XH#, Liu W#, Dong FQ, Xu Y, Tian SP, Chen T*. 2024. Sapindus mukorossi saponins inhibit gray mold on strawberry fruit by impairing membrane integrity and organellar homeostasis of Botrytis cinerea. Postharvest Biology and Technology, 207: 112594.
  3. Chen DG, Zhang ZQ, Chen Y, Li BQ, Chen T*, Tian SP*. 2024. Transcriptional landscape of pathogen-responsive lncRNAs in tomato unveils the role of hydrolase encoding genes in response to Botrytis cinerea invasion. Plant Cell and Environment, 47: 651–663.

2023

  1. Ji DC#, Liu W#, Cui XM, Liu K, Liu YH, Huang XH, Li BQ, Qin GZ, Chen T*, Tian SP*. 2023. A receptor-like kinase SlFERL mediates immune responses of tomato to Botrytis cinerea by recognizing BcPG1 and fine-tuning MAPK signaling. New Phytologist, 240: 1189–1201.
  2. Liu K#, Liu W#, Huang XH, Liu YH, Cui XM, Zhang ZQ, Li BQ, El-Mogy MM, Tian SP, Chen T*. 2023. Identification of virulence-related proteins during Botrytis cinerea - fruit interaction at early phase. Postharvest Biology and Technology, 204: 112443.
  3. Chen DG#, Chen T#, Chen Y#, Zhang ZQ, Li BQ, Tian SP*. 2023. Bio-source substances against postharvest diseases of fruits: Mechanisms, applications and perspectives. Postharvest Biology and Technology, 198: 112240.
  4. Chen T#, Zhang ZQ#, Chen Y, Li BQ, Tian SP*. 2023. Botrytis cinerea. Current Biology, 33 (11): R460–R462.
  5. Ji DC, Liu W, Jiang LB, Chen T*. 2023. Cuticles and postharvest life of fruits: a rigid cover for aerial epidermis or a multifaceted guard of freshness? Food Chemistry, 411: 135484.
  6. Chen DG#, Chen T#, Chen Y#, Zhang ZQ, Li BQ, Tian SP*. 2023. Bio-source substances against postharvest diseases of fruits: Mechanisms, applications and perspectives. Postharvest Biology and Technology, 198: 112240.
  7. 黄鑫华, 刘伟, 田世平, 陈彤*. 2023. 蛋白液-液相分离调控植物发育及胁迫应答研究进展. 植物学报, 58 (6): 946–955.

2022

  1. Duan ZK#, Liu W#, Li KW, Duan WW, Zhu SW, Xing JJ*, Chen T*, Luo XM*. 2022. Regulation of immune complex formation and signaling by FERONIA, a busy goddess in plant-microbe interaction. Molecular Plant Pathology, 23: 1695–1700.
  2. Xing JJ*, Ji DC, Duan ZK, Chen T*, Luo XM*. 2022. Spatiotemporal dynamics of FERONIA reveal alternative endocytic pathways in response to flg22 elicitor stimuli. New Phytologist, 235: 518–532.
  3. Liu W, Liu K, Chen D, Zhang Z, Li B, El-Mogy MM, Tian S, Chen T*. 2022. Solanum lycopersicum, a model plant for the studies in developmental biology, stress biology and food science. Foods, 11: 2402.
  4. Xu XD#, Chen Y#, Li BQ, Zhang ZQ, Qin GZ, Chen T*, Tian SP*. 2022. Molecular mechanisms underlying multi-level defense responses of horticultural crops to fungal pathogens. Horticulture Research, 9: uhac066.

2021

  1. Cui XM#, Ma DY#, Liu XY, Zhang ZQ, Li BQ, Xu Y, Chen T*, Tian SP. 2021. Magnolol inhibits gray mold on postharvest fruit by inducing autophagic activity of Botrytis cinerea. Postharvest Biology and Technology, 180: 111596.
  2. Liu XY#, Cui XM#, Ji DC, Zhang ZQ, Li BQ, Xu Y, Chen T*, Tian SP. 2021. Luteolin-induced activation of the phenylpropanoid metabolic pathway contributes to quality maintenance and disease resistance of sweet cherry. Food Chemistry, 342: 128309.
  3. Chen T, Ji DC, Zhang ZQ, Li BQ, Qin GZ, Tian SP*. 2021. Advances and strategies for controlling the quality and safety of postharvest fruit. Engineering, 7: 1177-1184.
  4. Zhang ZQ#, Chen T#, Li BQ, Qin GZ, Tian SP*. 2021.Molecular mechanism of pathogenesis of postharvest pathogenic fungi and control strategy in fruits: progress and prospect. Molecular Horticulture, 1: 2.
  5. 崔晓敏, 季东超, 陈彤*, 田世平. 2021. 类受体激酶FERONIA调节植物与病原菌相互作用的分子机制. 植物学报, 56 (3): 339–346.

2020

  1. Chen T#, Qin GZ#, Tian SP*. 2020. Regulatory network of fruit ripening: current understandings and future challenges. New Phytologist, 228: 1219–1226.
  2. Ji DC, Cui XM, Qin GZ, Chen T*, Tian SP*. 2020. SlFERL interacts with S-adenosylmethionine synthetase to regulate fruit ripening.Plant Physiology, 184: 2168–2181.
  3. Cai JH#, Chen T#, Wang Y, Qin GZ, Tian SP*. 2020. SlREM1 triggers cell death by activating an oxidative burst and other regulators. Plant Physiology, 183: 717–732.
  4. Liu XY, Li JK, Cui XM, Ji DC, Xu Y, Chen T*, Tian SP. 2020. Exogenous bamboo pyroligneous acid improves antioxidant capacity and primes defense responses of harvested apple fruit. LWT - Food Science and Technology, 134: 110191.
  5. Liu XY, Ji DC, Cui XM, Zhang ZQ, Li BQ, Xu Y, Chen T*, Tian SP. 2020. p-Coumaric acid induces antioxidant capacity and defense responses of sweet cherry fruit to fungal pathogens. Postharvest Biology and Technology, 169: 111297.
  6. Ma DY, Ji DC, Liu JL, Xu Y, Chen T*, Tian SP. 2020. Efficacy of methyl thujate in inhibiting Penicillium expansum growth and possible mechanism involved. Postharvest Biology and Technology, 161: 111070.
  7. Ma DY, Cui XM, Zhang ZQ, Li BQ, Xu Y, Tian SP, Chen T*. 2020. Honokiol suppresses mycelial growth and reduces virulence of Botrytis cinerea by inducing autophagic activities and apoptosis. Food Microbiology, 88: 103411.
  8. 刘晓云, 徐勇, 田世平, 陈彤*. 2020. 竹材次生代谢物在果蔬采后病害控制与保鲜中的作用研究进展. 浙江大学学报(农业与生命科学版), 46 (1): 17-26.

2019

  1. Ma DY, Ji DC, Zhang ZQ, Li BQ, Qin GZ, Xu Y, Chen T*, Tian SP. 2019. Efficacy of rapamycin in modulating autophagic activity of Botrytis cinerea for controlling gray mold. Postharvest Biology and Technology, 150: 158-165.
  2. 马丹颖, 季东超, 徐勇,陈彤*, 田世平. 2019. 活性氧调控植物细胞自噬的研究进展. 植物学报, 54 (1): 81–92.

2018

  1. Chen T#, Ji DC#, Tian SP*. 2018. Variable-angle epifluorescence microscopy characterizes protein dynamics in the vicinity of plasma membrane in plant cells. BMC Plant Biology, 18: 43.
  2. Ji DC#, Chen T#, Ma DY, Liu JL, Xu Y, Tian SP*. 2018. Inhibitory effects of methyl thujate on mycelial growth of Botrytis cinerea and possible mechanisms of action. Postharvest Biology and Technology, 142: 46-54.
  3. Ma DY, Xu Y, Zhang ZQ, Li BQ, Chen T*, Tian SP. 2018. Efficacy of ABA-mimicking ligands in controlling water loss and maintaining antioxidative capacity of Spinacia oleracea. Journal of Agricultural and Food Chemistry, 66: 13397-13404.

2015及之前

  1. 季东超, 宋凯, 邢晶晶, 陈彤*, 田世平. 2015. LysM蛋白介导植物免疫防卫反应及其信号激发的研究进展. 植物学报, 50 (5): 628-636.
  2. Wang L, Lv XQ, Li H, Zhang M, Wang H, Jin B, Chen T*. 2012. Inhibition of apoplastic calmodulin impairs calcium homeostasis and cell wall modeling during Cedrus deodara pollen tube growth. PLoS One, 2013, 8(2): e55411.
  3. Chen T, Wang XH, von Wangenheim D, Zheng M, Samaj J, Ji WQ, Lin JX*. 2012. Probing and tracking organelles in living plant cells. Protoplasma, 249, S157-S167.
  4. Zhou QY, Wang L, Cai X, Wang D, Hua XJ, Qu LQ, Lin JX, Chen T*. 2011. Net sodium fluxes change significantly at anatomically distinct root zones of rice (Oryza sativa L.) seedlings.Journal of Plant Physiology, 168, 1249-1255.
  5. Chen T, Cai X, Wu XQ, Karahara I, Schreiber L, Lin JX*. Casparian strip development and its potential function in salt tolerance. Plant Signaling and Behavior, 2011, 6, 1499-1502.
  6. Wu XQ#, Chen T#, Zheng MZ, Chen YM, Teng NJ, Samaj J, Baluska F, Lin JX*. 2010. Integrative proteomic and cytological analysis of the effects of extracellular Ca2+ influx on Pinus bungeana pollen tube development. Journal of Proteome Research, 7, 4299-4312.
  7. Chen T, Wu XQ, Chen YM, Li XJ, Huang M, Zheng MZ, Baluska F, Samaj J, Lin JX*. 2009. Combined proteomic and cytological analysis of Ca2+-calmodulin regulation in Picea meyeri pollen tube growth. Plant Physiology, 2009, 149, 1111-1126.
  8. Chen T, Teng NJ, Wu XQ, Wang YH, Tang W, Samaj J, Baluska F, Lin JX*. 2007. Disruption of actin filaments by latrunculin B affects cell wall construction in Picea meyeri pollen tube by disturbing vesicle trafficking. Plant and Cell Physiology, 48: 19-30.