Roles of ubiquitination-mediated protein degradation in plant responses to abiotic stresses
作 者:Zhang ZY,Li JH, Liu HH, Chong K, Xu YY* |
影响因子:3.003 |
刊物名称:Environmental and Experimental Botany |
出版年份:2015 |
卷:114 期:- 页码:92-103 |
Ubiquitination is a major modifier of signaling in all eukaryotes that results in the conjugation of ubiquitin to the lysine residues of acceptor proteins. The targeted protein is then subjected to degradation by the 26S proteasome, the major protein degradation system in eukaryotes. The ubiquitin-proteasome system (UPS) greatly influences plant growth and development by modulating the activity, localization, and stability of proteins. Plants are frequently exposed to various abiotic stresses during their life cycles; they rely on proteomic plasticity achieved by the UPS to adapt to unfavorable environmental conditions. In stress signal pathways, a large number of components are modified by specific ubiquitination machinery. In this review, we highlight recent advances in understanding the roles of ubiquitination in plant responses to abiotic stresses, including salt and drought, temperature, ultraviolet (UV), and nutrient availability. The review focuses primarily on the roles of the UPS. In salt and/or drought stress signaling, a number of E3 ligases mediate the stress response in both abscisic acid (ABA)-dependent and ABA-independant pathways. The UPS-mediated regulation of several key ABA-regulated transcriptional factors, e.g. ABI3 and ABI5, has been well documented. In cold signaling, the transcription factor ICE1 is targeted by E3 ligase HOSI for proteosomal degradation. Under UV stress, CUL4-DDB1A-DDB2 E3 ligase participates in DNA excision repair, and COP1 interacts with the UVR8 mediated UV response. The UPS is also involved in the uptake, transport, and homeostasis of nutrients such as iron, phosphorus, and nitrogen. SIZ1-mediated sumoylation, a ubiquitin-like modification, is necessary for a number of processes involved in plant responses to abiotic stresses. A challenge moving forward for researchers is to define more UPS components and to characterize their functions in plant responses to stress conditions; there is particular interest in identifying the ubiquitination targets that function in specific stress signaling pathways.