Molecular phylogenetics and evolutionary history of sect. Quinquefoliae (Pinus): Implications for Northern Hemisphere biogeography
作 者:Hao ZZ, Liu YY, Nazaire M, Wei XX*, Wang XQ* |
影响因子:3.916 |
刊物名称:Molecular Phylogenetics and Evolution |
出版年份:2015 |
卷: 期: 页码:doi:10.1016/j.ympev.2015.03.013 |
Climatic changes and tectonic events in the Cenozoic have greatly influenced the evolution and geographic distribution of the temperate flora. Such consequences should be most evident in plant groups that are ancient, widespread, and diverse. As one of the most widespread genera of trees, Pinus provides a good model for investigating the history of species diversification and biogeographic disjunction in the Northern Hemisphere. In this study, we reconstructed the phylogeny and investigated the evolutionary and biogeographic history of sect. Quinquefoliae (Pinus), a species-rich lineage disjunctly distributed in Asia, Europe and North America, based on complete taxon sampling and by using nine DNA fragments from chloroplast (cp), mitochondrial (mt) and nuclear genomes. The monophyly of the three subsections, Krempfianae,Gerardianae, and Strobus, is well-supported by cpDNA and nuclear gene phylogenies. However, neither subsect. Gerardianae nor subsect. Strobus forms a monophyletic group in the mtDNA phylogeny, in which sect. Quinquefoliae was divided into two major clades, one consisting of the North American and northeastern Asian species as well as the European P. peuce of subsect. Strobus, and the other comprising the remaining Eurasian species belonging to three subsections. The significant topological incongruence among the gene trees, in conjunction with divergence time estimation and ancestral area reconstruction, indicates that both ancient and relatively recent introgressive hybridization events occurred in the evolution of sect. Quinquefoliae, particularly in northeastern Asia and northwestern North America. In addition, the phylogenetic analysis suggests that the species of subsect. Strobus from subtropical eastern Asia and neighboring areas may have a single origin, although species non-monophyly is very widespread in the nuclear gene trees. Moreover, our study seems to support a Tethyan origin of sect. Quinquefoliae given the distributions and phylogenetic positions of subsects. Krempfianae and Gerardianae, and also highlights the importance of active mountain buildings and climatic changes during the Late Neogene in shaping the species diversity and geographic distribution of Pinus.