姓  名: 山红艳
职务/职称: 研究员
联系电话: (86)-010-62836736
电子邮件:
个人网页: http://www.lseb.cn/rcpy/dsjj/sd/shy/
课 题 组: 进化发育与调控基因组学研究组
山红艳,女,博士,研究员,博士生导师。

1999年和2002年在东北师范大学分别获学士和硕士学位,2006年在中国科学院植物研究所获博士学位并留所工作,历任助理研究员、副研究员和研究员。2007年至2008年在美国佐治亚大学进行博士后研究。2011年入选“中国科学院青年创新促进会”。主要从事花的进化发育遗传学和花发育调控网络的进化研究,目前重点关注花起源和多样化的分子机制。以第一或通讯作者在Nature PlantsThe Plant CellMolecular Biology and EvolutionPlant PhysiologyThe Plant JournalMolecular Phylogenetics and Evolution等刊物上发表论文近20篇,以合作者在Nature子刊、Science AdvancesPNASNew Phytologist等刊物上发表论文30余篇。

主要研究内容:

1. 花起源的分子机制

综合利用比较基因组学、进化生物学和发育生物学等多学科的研究方法和分析手段,揭示花起源的基因组基础,构建花起源的整合模型,阐明花和花器官起源的过程和机制。

2. 花基本结构多样化的分子机制

以特定类群(如毛茛科植物)为模式体系,通过比较转录组和分子进化分析以及基因表达和功能研究,揭示特殊花型发育和进化的过程和机制,探讨新性状起源和性状平行演化等进化生物学的基本问题。

主持的科研项目

国家自然科学基金委面上项目“翠雀族植物花起源的分子机制研究32370231; 直接经费50; 2024.01-2027.12)。

国家自然科学基金委面上项目“花起源的分子机制——基于LEAFY类基因和花发育MADS-box基因的调控进化研究31970246; 直接经费58; 2020.01-2023.12)。

国家自然科学基金委面上项目“花和花器官起源的分子机制研究”(31570225; 直接经费63; 2016.01-2019.12)。

科技部重大科学研究计划项目“植物减数分裂过程中染色体相互作用的分子机理”之子课题(2011CB944604; 89; 2011.01-2015.08)。

中国科学院青年创新促进会专项经费(40; 2011.01-2014.12)。

国家自然科学基金委面上项目“花器官身份基因在蛋白质水平上的互作及其进化研究”(31070202; 30; 2011.01-2013.12)。

国家自然科学基金委重大项目“禾本科植物的适应性辐射及其进化机制”之子课题(30990240; 25; 2010.01-2013.12

国家自然科学基金委青年科学基金项目“核心真双子叶植物中euFULMADS-box基因的功能和进化”(30800065; 22; 2009.01-2011.12)。

中国科学院知识创新工程青年人才领域前沿项目“单性花产生的分子机制研究”(10; 2009.01-2010.12

系统与进化植物学国家重点实验室青年项目“雌雄异株植物性别决定和分化的分子机制研究”(15; 2008.01-2009.12

研究论文(注#为共同第一作者,*为通讯作者)

2024

50. Li S.#, Fan J.#, Xue C., Shan H., Kong H.*, 2024. Spur development and evolution: An update. Current Opinion in Plant Biology 81: 102573.

2023

49. Xiang K.#, Wu S.#, Lian L., He W., Peng D., Peng H., Zhang X., Li H., Xue J., Shan H., Xu G., Liu Y., Wu Z.*, Wang W.*, 2023. Genomic data and ecological niche modeling reveal the unusually slow rate of molecular evolution in the Cretaceous Eupteleaceae. SCIENCE CHINA Life Sciences 67: 803-816.

48. Cheng J.#, Yao X.#, Li X.#, Yue L., Duan X., Li B., Fu X., Li S., Shan H., Yin X., Whitewoods C., Coen E., Kong H.*, 2023. Diversification of ranunculaceous petals in shape supports a generalized model for plant lateral organ morphogenesis and evolution. Science Advances 9: eadf8049.

47. Zhao H.#, Liao H.#, Li S.#, Zhang R., Dai J., Ma P., Wang T., Wang M., Yuan Y., Fu X., Cheng J., Duan X., Xie Y., Zhang P., Kong H.*, Shan H.*, 2023. Delphinieae flowers originated from the rewiring of interactions between duplicated and diversified floral organ identity and symmetry genes. The Plant Cell 35: 994-1012. (Cover Story)

46. Yuan Y.#, Li X.#, Yao X.#, Fu X., Cheng J., Shan H., Yin X.*, Kong H.*, 2023. Mechanisms underlying the formation of complex color patterns on Nigella orientalis (Ranunculaceae) petals. New Phytologist 237: 2450-2466.

2022

45. 薛成, 李波卡, 雷天宇, 山红艳, 孔宏智*, 2022. 生物多样性起源与进化研究进展. 生物多样性30: 22460.

44. Fu X., Shan H., Yao X., Cheng J., Jiang Y., Yin X., Kong H.*, 2022. Petal development and elaboration. Journal of Experimental Botany 73: 3308-3318.

2021

43. Qin L.#, Hu Y.#, Wang J.#, Wang X.#, Zhao R.#, Shan H., Li K., Xu P., Wu H., Yan X., Liu L., Yi X., Wanke S., Bowers J. E., Leebens-Mack J. H., dePamphilis C. W., Soltis P. S., Soltis D. E., Kong H., Jiao Y.*, 2021. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome. Nature Plants 7: 1239-1253.

42. Shan H., Kong H.*, 2021. The genome of Ginkgo biloba refined. Nature Plants 7: 714-715. (News & Views)

2020

41. Duan X.#, Zhao C.#, Jiang Y.#, Zhang R., Shan H.*, Kong H.*, 2020. Parallel evolution of apetalous lineages within the buttercup family (Ranunculaceae): outward expansion of AGAMOUS1, rather than disruption of APETALA3-3. The Plant Journal 104: 1169-1181.

40. Zhang R.#, Fu X.#, Zhao C.#, Cheng J.#, Liao H., Wang P., Yao X., Duan X., Yuan Y., Xu G., Kramer E. M., Shan H., Kong H.*, 2020. Identification of the key regulatory genes involved in elaborate petal development and specialized character formation in Nigella damascena (Ranunculaceae). The Plant Cell 32: 3095-3112.

39. Jiang Y.#, Wang M.#, Zhang R.#, Xie J., Duan X., Shan H., Xu G.*, Kong H.*, 2020. Identification of the target genes of AqAPETALA3-3 (AqAP3-3) in Aquilegia coerulea (Ranunculaceae) helps understand the molecular bases of the conserved and nonconserved features of petals. New Phytologist 227: 1235-1248.

38. Liao H.#, Fu X.#, Zhao H.#, Cheng J., Zhang R., Yao X., Duan X., Shan H., Kong H.*, 2020. The morphology, molecular development and ecological function of pseudonectaries on Nigella damascena (Ranunculaceae) petals. Nature Communications 11: 1777.

37. Zhong Y.#, Pan X.#, Wang R., Xu J., Guo J., Yang T., Zhao J., Nadeem F., Liu X., Shan H., Xu Y., Li X.*, 2020. ZmCCD10a encodes a distinct type of carotenoid cleavage dioxygenase and enhances plant tolerance to low phosphate. Plant Physiology 184: 374-392.

36. Yan S.#, Ning K.#, Wang Z.#, Liu X., Zhong Y., Ding L., Zi H., Cheng Z., Li X., Shan H., Lv Q., Luo L., Liu R., Yan L., Zhou Z., Lucas W. J., Zhang X.*. 2020. CsIVP functions in vasculature development and downy mildew resistance in cucumber. PLoS Biology 18: e3000671.

2019

35. Shan H., Cheng J., Zhang R., Yao X., Kong H.*, 2019. Developmental mechanisms involved in the diversification of flowers. Nature Plants 5: 917-923.

34. Yao X., Zhang W., Duan X., Yuan Y., Zhang R., Shan H., Kong H.*, 2019. The making of elaborate petals in Nigella through developmental repatterning. New Phytologist 223: 385-396.

33. Zhai W.#, Duan X.#, Zhang R., Guo C., Li L., Xu G., Shan H., Kong H.*, Ren Y.*, 2019. Chloroplast genomic data provide new and robust insights into the phylogeny and evolution of the Ranunculaceae. Molecular Phylogenetics and Evolution 135: 12-21.

32. 王宏哲, 张睿, 程劼, 段晓姗, 赵慧琪, 山红艳, 孔宏智*, 2019. 花基本结构的多样性及其分子机制. 中国科学:生命科学49: 292-300.

2017

31. 山红艳,孔宏智*, 2017. 花是如何起源的?科学通报62: 2323-2334.

30. Harkess A.#, Zhou J.#, Xu C.#, Bowers J. E., Van der Hulst R., Ayyampalayam S., Mercati F., Riccardi P., McKain M. R., Kakrana A., Tang H., Ray J., Groenendijk J., Arikit S., Mathioni S. M., Nakano M., Shan H., Telgmann-Rauber A., Kanno A., Yue Z., Chen H., Li W., Chen Y., Xu X., Zhang Y., Luo S., Chen H., Gao J., Mao Z., Pires J. C., Luo M., Kudrna D., Wing R. A., Meyers B. C., Yi K., Kong H., Lavrijsen P., Sunseri F., Falavigna A., Ye Y.*, Leebens-Mack J. H.*, Chen G.*, 2017. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nature Communications 8: 1279.

29.肖桂青*, 山红艳, 李强, 李为民, 温明章, 杜全生, 薛岚*, 2017. 2016年度国家自然科学基金植物学学科项目资助概况和分析. 中国科学基金31: 144-149.

28. 李强, 李为民, 山红艳, 肖桂青, 温明章, 杜全生*, 2017. 2016年度国家自然科学基金微生物学学科项目申请与资助概况分析. 微生物学报57: 1-7.

2016

27. Liao I.#*, Shan H.#, Xu G.#, Zhang R.#, 2016. Bridging evolution and development in plants. New Phytologist 212: 827-830.

26. Ye L.#, Wang B.#, Zhang W., Shan H.*, Kong H.*, 2016. Gains and losses of cis-regulatory elements led to divergence of the ArabidopsisAPETALA1 and CAULIFLOWER duplicate genes in the time, space, and level of expression and regulation of one paralog by the other. Plant Physiology 171: 1055-1069. (Commented by Gunter Theissen and Francois Parcy at Flowering Highlights; recommended by F1000Prime: https://facultyopinions.com/prime/726292577; Top Topics from 2016ofPlant Physiology)

25. Yu X.#, Duan X.#, Zhang R., Fu X., Ye L., Kong H., Xu G.*, Shan H.*, 2016. Prevalent exon-intron structural changes in the APETALA1/FRUITFULL, SEPALLATA, AGAMOUS-LIKE6, and FLOWERINGLOCUSCMADS-box gene subfamilies provide new insights into their evolution. Frontiers in Plant Science 7: 598.

24. Wang P.#, Liao H.#, Zhang W.#, Yu X., Zhang R., Shan H., Duan X., Yao X., Kong H.*, 2016. Flexibility in the structure of spiral flowers and its underlying mechanisms. Nature Plants 2: 15188. (Commented by Douglas E. Soltis, 2016. Diversification of the flower. Nature Plants 2: 15211.)

23. 山红艳, 王文国, 李为民, 温明章, 杜全生*, 2016. 国家自然科学基金加强资助植物分类学策略成效分析. 中国科学基金30: 553-562.

2015及以前

22. Harkess A., Mercati F., Shan H., Sunseri F., Falavigna A., Leebens-Mack J.*, 2015. Sex-biased gene expression in dioecious garden asparagus. New Phytologist 207: 883-892.

21. Li L.#, Yu X.#, Guo C., Duan X., Shan H., Zhang R., Xu G., Kong H.*, 2015. Interactions among proteins of floral MADS-box genes in Nuphar pumila (Nymphaeaceae) and the most recent common ancestor of extant angiosperms help understand the underlying mechanisms of the origin of the flower. Journal of Systematics and Evolution 53: 285-296. (Cover Story)

20. Li H., Meng F., Guo C., Wang Y., Xie X., Zhu T., Zhou S., Ma H., Shan H.*, Kong H.*, 2014. MeioBase: a comprehensive database for meiosis. Frontiers in Plant Science 5: 728.

19. Jia R., Guo C., Xu G., Shan H., Kong H.*, 2014. Evolution of the cyclin gene family in plants. Journal of Systematics and Evolution 52: 651-659.

18. 张睿*, 国春策, 山红艳, 孔宏智, 2014. 发育重塑与生物多样性. 生物多样性22: 66-71.

17. 国春策*, 张睿, 山红艳, 孔宏智, 2014. 调控进化与形态多样性. 生物多样性22: 72-79.

16. Zhang R.#, Guo C.#, Zhang W.#, Wang P., Li L., Duan X., Du Q., Zhao L., Shan H., Hodges S. A., Kramer E. M., Ren Y.*, Kong H.*, 2013. Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae). Proceedings of the National Academy of Sciences USA 110: 5074-5079.

15. Wang B., Zhang N., Guo C., Xu G., Kong H., Shan H.*, 2012. Evolutionary divergence of the APETALA1 and CAULIFLOWER proteins. Journal of Systematics and Evolution 50: 502-511.

14. Zhang N., Zeng L., Shan H., Ma H.*, 2012. Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. New Phytologist 195: 923-937.

13. Hu J.#, Zhang J.#, Shan H., Chen Z.*, 2012. Expression of floral MADS-box genes in Sinofranchetia chinensis (Lardizabalaceae): implications for the nature of the nectar leaves. Annals of Botany 110: 57-69.

12. Xu G.#, Guo C.#, Shan H., Kong H.*, 2012. Divergence of duplicate genes in exon–intron structure. Proceedings of the National Academy of Sciences USA 109: 1187-1192.

11. Liu Y., Guo C., Xu G., Shan H., Kong H.*, 2011. Evolutionary pattern of the regulatory network for flower development: insights gained from a comparison of two Arabidopsis species. Journal of Systematics and Evolution 49: 528-538.

10. Liu C.#, Zhang J.#, Zhang N.#, Shan H., Su K., Zhang J., Meng Z., Kong H.*, Chen Z.*, 2010. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development. Molecular Biology and Evolution 27: 1598-1611.

9. 薛皓月, 徐桂霞, 国春策, 山红艳, 孔宏智*, 2010. 拟南芥和琴叶拟南芥中MADS-box基因的比较进化分析. 生物多样性18: 109-119.

8. Shan H., Zahn L., Guindon S., Wall P. K., Kong H., Ma H., dePamphilis C. W., Leebens-Mack J.*, 2009. Evolution of plant MADS-box transcription factors: evidence for shifts in selection associated with early angiosperm diversification and concerted gene duplications. Molecular Biology and Evolution 26: 2229-2244.

7. Su K.#, Zhao S.#, Shan H., Kong H., Lu W., Theissen G., Chen Z.*, Meng Z.*, 2008. The MIK region rather than the C-terminal domain of AP3-like class B floral homeotic proteins determines functional specificity in the development and evolution of petals. New Phytologist 178: 544-558.

6. Shan H.#, Zhang N.#, Liu C.#, Xu G., Zhang J., Chen Z.*, Kong H.*, 2007. Patterns of gene duplication and functional diversification during the evolution of the AP1/SQUA subfamily of plant MADS-box genes. Molecular Phylogenetics and Evolution 44: 26-41.

5. 山红艳*, 2007. 形态性状、分子性状与同源性. 植物学通报24: 71-79.

4. Shan H., Su K., Lu W., Kong H., Chen Z.*, Meng Z.*, 2006. Conservation and divergence of candidate class B genes in Akebia trifoliata (Lardizabalaceae). Development Genes and Evolution 216: 785-795.

3. Shan H., Li X.*, Li D., Shao S., Liu B., 2004. Differential expression of specific proteins during in vitro tomato organogenesis. Russian Journal of Plant Physiology 51: 379-385.

2. 李丹, 山红艳, 邵素清, 李喜文*, 2003. 美国叶用莴苣的组织培养与植株再生. 植物生理学通讯39: 148.

1. 山红艳, 李丹, 李喜文*, 朱进, 2000. 转基因番茄作为生物反应器的研究进展. 东北师大学报自然科学版11: 97-100.