姓  名: 王天佐
职务/职称: 研究员
联系电话: (86)-010-62836176
电子邮件: tzwang@ibcas.ac.cn
个人网页: http://lvec.ibcas.ac.cn/rcdw/yjy/202002/t20200207_541822.html
课 题 组: 草地养分利用与调控研究组
王天佐,男,博士,研究员,博士生导师。

2007年获山东农业大学学士学位;2012年获中国科学院植物研究所博士学位,并留所工作;曾赴美国Noble Research Institute访问学习。现兼任中国科学院大学岗位教授,Fundamental Research青年编委,中国草学会饲料生产专业委员会理事。近年来主持国家自然科学基金重点项目、国家科技创新2030重大项目及重点研发计划子课题;在Plant, Cell & EnvironmentTheoretical and Applied GeneticsFundamental Research等刊物发表第一/通讯作者论文近30余篇;获批草品种3个,专利3项。

主要研究方向:

苜蓿抗逆机理与遗传育种

主持及参与的科研项目:

(1) 国家自然科学基金重点项目,干旱胁迫下花苜蓿磷元素高效利用机制解析,2024-012028-12,项目负责人

(2) 国家重点研发计划,主要牧草优异性状形成的分子基础,2022-122027-11,子课题负责人

(3) 国家重点研发计划,北方农牧交错带退化草地多维度修复与多功能提升技术研发与示范,2022-092026-08,子课题负责人

(4) 国家自然科学基金面上项目,花苜蓿耐受干旱胁迫的多层面机制解析,2021-012024-12,项目负责人

(5) 国家重点研发计划,农特产品绿色节能干燥技术装备研发,2018-062020-12,子课题负责人

(6) 国家自然科学基金青年项目,黄花苜蓿小G蛋白基因MfARL1的抗逆功能研究,2014-012016-12,项目负责人

代表性论文

2023

Wang TZ*, Wang J, Chen L, Yao JY, Yuan Z, Zhang D, Zhang WH. 2023. Reorganization of three-dimensional chromatin architecture in Medicago truncatula under phosphorus deficiency. Journal of Experimental Botany, 74: 2005–2015.

Wang TZ, Wang J, Zhang D, Chen L, Liu M, Zhang XX, Schmidt W, Zhang WH*. 2023. Protein kinase MtCIPK12 modulates iron reduction in Medicago truncatula by regulating riboflavin biosynthesis. Plant, Cell & Environment, 46: 991–1003.

Wang TZ, Zhang WH*. 2023. Priorities for the development of alfalfa pasture in northern China. Fundamental Research, 3: 225–228.

Gu X#, Wang TZ#, Li CH*. 2023. Elevated ozone decreases the multifunctionality of belowground ecosystems. Global Change Biology, 29: 890–908.

陈力,王靖,邱晓,孙海莲,张文浩,王天佐* (2023) 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究. 作物学报, 49: 2122–2132.

2022

Wang TZ*, Zhang D, Chen L, Wang J, Zhang WH. 2022. Genome‑wide analysis of the Glutathione S-Transferase family in wild Medicagoruthenica and drought-tolerant breeding application of MruGSTU39 gene in cultivated alfalfa. Theoretical and Applied Genetics, 135: 853–864.

Zhang XX, Sun Y, Qiu X, Lu H, Hwang I, Wang TZ*. 2022. Tolerant mechanisms of model legume plant Medicago truncatula to drought, salt and cold stresses. Frontiers inPlant Science, 13: 847166.

2021

Wang TZ, Ren LF, Li CH, Zhang D, Zhang XX, Zhou G, Gao D, Chen RJ, Chen YH, Wang ZL, Shi FL, Farmer AD, Li YS, Zhou MY*, Young ND, Zhang WH*. 2021. The genome of a wild Medicago species provides insights into the tolerant mechanisms of legume forage to environmental stress. BMC Biology, 19: 96.

Zhang XX, Wang TZ*. 2021. Plant 3D chromatin organization: Important insights from chromosome conformation capture analyses of the last 10 years. Plant & Cell Physiology, 62: 1648–1661.

张迪,刘广彬,罗伏青,张文浩, 王天佐*. 2021. 不同干燥方式对苜蓿种子代谢物的影响. 草业学报, 30: 158–166.

2020

Zhang XX, Zhang XF, Zhang L, Zhang YC, Zhang D, Gu X, Zheng YH, Wang TZ*, Li CH*. 2020. Metabolite profiling for model cultivars of wheat and rice under ozone pollution. Environmental and Experimental Botany, 179: 104214.

Wang TZ, Zhang XX, Liu M, Zhang WH. 2020. Transcriptomic profiling of genes and pathways associated with osmotic and salt stress responses in Medicago truncatula. In: de Bruijn FJ (ed) The Model Legume Medicago truncatula. Wiley, pp 1062–1068.

张迪,任立飞,张璐璐,张文浩, 王天佐*. 2020. 基于荧光毛细管电泳技术的苜蓿品种SSR指纹图谱构建. 中国草地学报, 42: 10–14.

王天佐*,张文浩. 2020. 发根农杆菌介导的花苜蓿毛状根转化体系的建立. 草地学报, 28: 268–272.

2019及以前

Zhang XX, Zhang D, Sun W, Wang TZ*. 2019. The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. International Journal of Molecular Sciences, 20: 2424.

Li CH, Song YJ, Guo LY, Gu X, Muminov MA, Wang TZ*. 2018. Nitric oxide alleviates wheat yield reduction by protecting photosynthetic system from oxidation of ozone pollution. Environmental Pollution, 236: 296–303.

Wang TZ, Zhao MG, Zhang XX, Liu M, Yang CG, Chen YH, Chen RJ, Wen JQ, Mysore KS, Zhang WH*. 2017. Novel phosphate deficiency-responsive long non-coding RNAs in the legume model plant Medicago truncatula. Journal of Experimental Botany, 68: 5937–5948.

Wang TZ, Liu M, Zhao MG, Chen RJ, Zhang WH*. 2015. Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biology, 15: 131.

Liu M#, Wang TZ#, Zhang WH*. 2015. Sodium extrusion associated with enhanced expression of SOS1 underlies different salt tolerance between Medicago falcata and Medicago truncatula seedlings. Environmental and Experimental Botany, 110: 46–55.

Wang TZ, Tian QY, Wang BL, Zhao MG, Zhang WH*. 2014. Genome variations account for different response to three mineral elements between Medicago truncatula ecotypes Jemalong A17 and R108. BMC Plant Biology, 14: 122.

Wang TZ, Zhang WH. 2013. Genome-wide identification of microRNAs in Medicago truncatula by high-throughput sequencing. In: Rose RJ (ed) Legume Genomics: Methods and Protocols. Methods in Molecular Biology, vol 1069. Springer, pp 67–80.

Wang TZ#, Zhang JL#, Tian QY, Zhao MG, Zhang WH*. 2013. A Medicago truncatula EF-hand family gene, MtCaMP1, is involved in drought and salt stress tolerance. PLoS One, 8: e58952.

Wang TZ, Xia XZ, Zhao MG, Tian QY, Zhang WH*. 2013. Expression of a Medicago falcata small GTPase gene, MfARL1 enhanced tolerance to salt stress in Arabidopsis thaliana. Plant Physiology and Biochemistry, 63: 227–235.

王天佐,赵敏桂*,张文浩. 2012. 干旱胁迫下黄花苜蓿与蒺藜苜蓿两个抑制性差减杂交文库的构建及分析. 草业学报, 21: 175–181.

Wang TZ, Chen L, Zhao MG, Tian QY, Zhang WH*. 2011. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics, 12: 367.