Reticulate evolution in Thuja inferred from multiple gene sequences: Implications for the study of biogeographical disjunction between eastern Asia and North America

作  者:Peng D,Wang XQ
影响因子:3.994
刊物名称:Molecular Phylogenetics and Evolution
出版年份:
卷:47  期:3  页码:1190-1202

论文摘要:

The eastern Asia-North America disjunction is one of the most interesting biogeographical patterns, but its formation is still in much debate. Here nucleotide sequences of five cpDNA regions, nrDNA ITS and two low-copy nuclear genes (LEAFY, 4CL) were employed to reconstruct the phylogeny and to explore the historical biogeography of Thuja, a typical eastern Asia-North America disjunct genus. High topological discordance was observed between chloroplast and nuclear gene trees, even between different nuclear gene trees, suggesting that Thuja could have a reticulate evolutionary history due to multiple interspecific hybridization events. The eastern Asian species Thuja koraiensis might have obtained its chloroplast genome from the eastern North American species T. occidentalis by chloroplast capture, while the western North American species T. plicata is very likely to have inherited a recombinant cpDNA. Based on the phylogenetic analysis of multiple genes, DIVA-reconstruction of the distribution history, molecular clock estimation and fossil data, we inferred that Thuja could have originated from the high-latitude areas of North America in the Paleocene or earlier with subsequent expansion into eastern Asia through the Bering Land Bridge. The two eastern Asia species T standishii and T. sutchuenensis have a sister relationship, and their split could have occurred in the Oligocene or early Miocene. In the present study, the selection of molecular markers in biogeographic studies was also discussed. Since most previous studies on the eastern Asia and North America disjunction are based on uniparentally inherited cpDNA and (or) directly sequenced nrDNA ITS data, the historical reticulate evolution in the studied groups might have been underestimated. Therefore, we suggest that multiple genes from different genomes, especially low-copy nuclear genes, be used in this research area in the future. (C) 2008 Elsevier Inc. All rights reserved.
全文链接: