Temporal and spatial variability and controls of soil respiration in a temperate steppe in northern China - art. no. GB2010
作 者:Chen QS, Wang QB, Han XG, Wan SQ, Li LH |
影响因子:4.294 |
刊物名称:Global Biogeochemical Cycles |
出版年份:2010 |
卷:24 期: 页码:B2010-B2010 |
Results: In this study, we found that treatments with latrunculin B (Lat-B) and jasplakinolide (Jas), which depolymerize and polymerize actin filaments respectively, decreased membrane potential and Ca2+ stores in the mitochondria of Arabidopsis root hairs. Simultaneously, these treatments induced an instantaneous increase of cytoplasmic Ca2+, followed by a continuous decrease. All of these effects were inhibited by pretreatment with cyclosporin A (Cs A), a representative blocker of the mitochondrial permeability transition pore (mPTP). Moreover, we found there was a Ca2+ concentration gradient in mitochondria from the tip to the base of the root hair, and this gradient could be disrupted by actin-acting drugs.
Conclusions: Based on these results, we concluded that the disruption of actin filaments caused by Lat-B or Jas promoted irreversible opening of the mPTP, resulting in mitochondrial Ca2+ release into the cytoplasm, and consequent changes in [Ca2+](c). We suggest that normal polymerization and depolymerization of actin filaments are essential for mitochondrial Ca2+ storage in root hairs.