Contrasting responses of salinity-stressed salt-tolerant and intolerant winter wheat (Triticum aestivum L.) cultivars to ozone pollution

作  者:Y.H. Zheng, X. Li, Y.G. Li, B.H. Miao, H. Xu, M. Simmons, X.H. Yang
影响因子:2.402
刊物名称:Plant Physiology and Biochemistry
出版年份:2012
卷:52  期:  页码:169-178

论文摘要:

 Contrasting winter wheat cultivars, salt-tolerant DK961 and intolerant JN17, which sown in no salinity (-S) and salinity (+S) boxes were exposed to charcoal filtered air (CF) and elevated O-3 (+O-3) in open top chambers (OTCs) for 30 days. In -S DK961 and JN17 plants, +O-3 DK961 and JN17 plants had significantly lower light-saturated net photosynthetic rates (A(sat), 26% and 24%), stomatal conductance (g(s), 20% and 32%) and chlorophyll contents (10% and 21%), while O-3 considerably increased foliar electrolyte leakage (13% and 39%), malondialdehyde content (9% and 23%), POD activity and ABA content. However, responses of these parameters to O-3 were significant in DK961 but not in JN17 in +S treatment. Correlation coefficient of DK961 reached significance level of 0.01, but it was not significant in JN17 under interaction of O-3 and salinity. O-3-induced reductions were larger in shoot than in root in both cultivars. Results indicate that the salt-tolerant cultivar sustained less damage from salinity than did the intolerant cultivar but was severely injured by O-3 under +S condition. Therefore, selecting for greater salt tolerance may not lead to the expected gains in yield in areas of moderate (100 mM) salinity when O-3 is present in high concentrations. In contrast, salinity-induced stomatal closure effectively reduced sensitivity to O-3 in the salt-intolerant cultivar. Hence we sugO(3) stress, while intolerant cultivars might be adaptable to areas of mild/moderate salinity but high O-3 pollution.
全文链接: